Amit M Agarwal Solutions for Chapter: Continuity and Differentiability, Exercise 6: Proficiency in 'Continuity and Differentiability' Exercise 2

Author:Amit M Agarwal

Amit M Agarwal Mathematics Solutions for Exercise - Amit M Agarwal Solutions for Chapter: Continuity and Differentiability, Exercise 6: Proficiency in 'Continuity and Differentiability' Exercise 2

Attempt the practice questions on Chapter 6: Continuity and Differentiability, Exercise 6: Proficiency in 'Continuity and Differentiability' Exercise 2 with hints and solutions to strengthen your understanding. Skills in Mathematics Differential Calculus for JEE Main & Advanced solutions are prepared by Experienced Embibe Experts.

Questions from Amit M Agarwal Solutions for Chapter: Continuity and Differentiability, Exercise 6: Proficiency in 'Continuity and Differentiability' Exercise 2 with Hints & Solutions

MEDIUM
JEE Main
IMPORTANT

A function f:RR satisfies the equation fx+y=fxfy for all x,y in R and fx0, for any x in R. Let the function be differentiable at x=0 and f'0=2. Show that f'x=2fx, for all x in R. Hence, determine fx.

MEDIUM
JEE Main
IMPORTANT

Suppose the function f satisfies the following two conditions for all x, yR

i  fx+y=fxfy                   ii fx=1+xg(x), where limx0g(x)=1

Prove that the derivative f'x, exists and f'x=fx.

MEDIUM
JEE Main
IMPORTANT

Let, fxy=f(x)f(y) and f is differentiable at x=1, such that f'(1)=1 also f10, then show that f is differentiable for all x0. Hence, determine fx.

MEDIUM
JEE Main
IMPORTANT

A function f:RR, where R is a set of real numbers, satisfying the equation fx+y3=fx+fy+f03 for all x,y in R. If the function is differentiable at x=0, then show that it is differentiable for all x in R.

HARD
JEE Main
IMPORTANT

Let, fx+y=fx+fy+2xy-1, for all real x,y and fx be differentiable function. If f'0=cosα, then prove that fx>0  xR.

MEDIUM
JEE Main
IMPORTANT

If fx is a real-valued function not identically equal to zero, such that fx+yn=fx+fnyx,yR and n is natural number >1 and f'00, then find the values of f5 and f'10.

HARD
JEE Main
IMPORTANT

Find the area of the region bounded by y=fx, y=gx and the lines x=0, x=2 where f and g satisfying fx+y=fx+fy-8xy  x,yR and gx+y=gx+gy+3xyx+y  x,yR also f'0=8, g'(0)=-4.

MEDIUM
JEE Main
IMPORTANT

Let, f:RR, is a real-valued differentiable function  x,yR such that fx-fyx-y3. Prove that hx=f(x)dx is continuous function of x, xR.