CBSE NCERT Solutions for Class 10 mathematics Chapter 6

Exercise 6.1

Q.1. All circles are \qquad . (congruent, similar)
similar
Solution: All circles have the same shape i.e. they are round. But the size of a circle may vary.
Thus circles are similar. Each circle has a different radius so the size of the circle may vary.

Q.2. All squares are \qquad (similar, congruent) similar

Solution: We know that,
All the sides of a square are equal.
Since the ratios of the lengths of their corresponding sides are equal. Hence, all squares are similar since size of squares may be different, but the shape will be always same.
Q.3. All \qquad triangles are similar. (Isosceles, equilateral)
equilateral
Solution: We know that, all the sides of an equilateral triangle are equal.

All equilateral triangles are similar because of their same shape.
Q.4. Two polygons of the same number of sides are similar, if their corresponding angles are \qquad and their corresponding sides are proportional. [proportional / equal]
equal
Solution: Two polygons of same number of sides are similar, if their corresponding angles are equal and their corresponding sides are proportional.

For example, if two triangles with angles $30^{\circ}, 60^{\circ}$ and 90° are similar, then the ratio Hypotenuse of 1 st circleHypotenuse of 2 st circle will be the same.
Q.5. Give two different examples of pair of similar figures.

Solution: Two figures are said to be similar if the ratio of corresponding sides are equal.
Two equilateral triangles with sides 1 cm and 2 cm .

Ratio of the corresponding sides are: $\mathrm{ABDE}=12 \mathrm{ACDF}=12 \mathrm{BCEF}=12$ Here ratio of the equilateral triangles are same. Therefore, the above figures are similar.

Two squares with sides 1 cm and 2 cm .

Ratio of the corresponding sides are: $\mathrm{ABEF}=12 \mathrm{ACEG}=12 \mathrm{BDFH}=12 \mathrm{CDGH}=12$ Here also ratios of the corresponding sides are equal. Hence, the above two figures are similar.
Q.6. Give two different examples of a pair of non-similar figures.

Solution: Two figures are said to be non-similar if the ratio of the corresponding sides are not equal.
Consider a Trapezium and a square.

Ratio of the corresponding sides are: $\mathrm{PQAB}=3 \mathrm{~cm} 3 \mathrm{~cm}=1 \mathrm{PSAD}=43 \mathrm{QRBC}=6 \mathrm{~cm} 3 \mathrm{~cm}=2$ SRDC $=53$ Thus, the ratio of the corresponding sides are not equal. Therefore, figures are not similar.

Consider a triangle and a parallelogram
Ratio of the corresponding sides are:
ACPS $=34 \operatorname{BCSR}=33=1$

Hence, the above two figures are non-similar.
Q.7. State whether the following quadrilaterals are similar or not.

Solution:

To check whether the given quadrilaterals are similar or not we need to check the ratio of the corresponding sides and angles.

Corresponding sides of two quadrilaterals are proportional i.e., $1: 2$ but their corresponding angles are not equal. Hence, quadrilaterals PQRS and ABCD are not similar.

Exercise 6.2

Q.1. In the figure given below, DE\|BC. Find EC.

Solution:

Let $E C=x \mathrm{~cm}$
Since DE\|BC
So, using basic proportionality theorem we get:
ADDB=AEEC
$\Rightarrow 1.53=1 \mathrm{x}$
$\Rightarrow x=3 \times 11.5$
$\Rightarrow \mathrm{x}=2$
Hence, EC=2 cm.
Q.2. In Fig. DE\|BC. Find AD

Solution:

Let $A D=x$ cm
Since DE\|BC
Hence, using Basic proportionality theorem,
$\mathrm{ADDB}=\mathrm{AEEC}$
$\Rightarrow \mathrm{x} 7.2=1.85 .4$
$\Rightarrow x=2.4 \mathrm{~cm}$
Hence, $A D=2.4 \mathrm{~cm}$
Q.3. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\mathrm{AOBO}=\mathrm{CODO}$. Show that ABCD is a trapezium.

Solution:

Draw a line segment $\mathrm{OE} \| \mathrm{AB}$
In $\triangle \mathrm{ABC}$
Since, $O E \| A B$.
Hence, $\mathrm{AOOC}=\mathrm{BEEC}$.
But by the given relation, we have:
$\mathrm{AOBO}=\mathrm{CODO}$
$\Rightarrow A O O C=O B O D$
Hence, OBOD=BEEC
So, using converse of basic proportionality theorem, EO\|DC.
Therefore, $\mathrm{AB}\|\mathrm{OE}\| \mathrm{DC}$
$\Rightarrow A B \| C D$
Therefore, ABCD is a trapezium.
Q.4. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. State whether $\mathrm{EF} \| \mathrm{QR}$ where $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.

Solution:

Given:
$\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
Now,
PEEQ $=3.93=1.3$
$\mathrm{PFFR}=3.62 .4=1.5$ Since, $\mathrm{PEEQ} \neq \mathrm{PFFR}$ Hence, EF is not parallel to QR .
Q.5. $\quad \mathrm{E}$ and F are points on the sides PQ and PR respectively of a $\triangle \mathrm{PQR}$. For each of the following cases, state whether $\mathrm{EF} \| \mathrm{QR}$: $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$

Solution:

Given, $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}, \mathrm{RF}=9 \mathrm{~cm}$ PEEQ=44.5=89

PFFR=89 Since PEEQ=PFFR
Hence, $\mathrm{EF} \| \mathrm{QR}$ (using Basic proportionality theorem)
Q.6. E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, state whether $E F \| Q R$: $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$

Solution:

Given, $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm} \mathrm{EQ}=\mathrm{PQ}-\mathrm{PE}=1.28-0.18=1.1 \mathrm{~cm}$ and $\mathrm{FR}=\mathrm{PR}-\mathrm{PF}=2.56-0.36=2.2 \mathrm{~cm}$ PEEQ $=0.181 .1=18110=955$ PFFR $=0.362 .2=955$ Since, $\mathrm{PEEQ}=\mathrm{PFFR}$ Hence, $\mathrm{EF} \| \mathrm{QR}$ (using basic proportionality thorem)
Q.7. In the figure, if $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$, prove that $\mathrm{AMAB}=\mathrm{ANAD}$

Solution:

In the given figure, $\mathrm{LM} \| \mathrm{CB}$.
Hence, using basic proportionality theorem, AMMB=ALLC
...(i) Since, LN॥CD Hence, using basic proportionality theorem, ANND=ALLC ...(ii)

From i and (ii)
$\mathrm{AMMB}=\mathrm{ANND}$
$\Rightarrow \mathrm{MBAM}=\mathrm{NDAN} \Rightarrow \mathrm{MBAM}+1=\mathrm{NDAN}+1 \Rightarrow \mathrm{MB}+\mathrm{AMAM}=\mathrm{ND}+\mathrm{ANAN} \Rightarrow \mathrm{ABAM}=\mathrm{ADAN} \Rightarrow \mathrm{AMAB}=\mathrm{ANAD}$
Q.8. In figure given below $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DF} \| \mathrm{AE}$. Prove that $\mathrm{BFFE}=\mathrm{BEEC}$.

Solution:

In $\triangle \mathrm{ABC}$
Since DEIIC
Hence, BDDA=BEEC ...(i) (using basic proportionality theorem)

In \triangle BAE,
Since DFiAE
Hence, BDDA=BFFE...(ii) (using basic proportionality theorem)
From i and (ii), we get:
BEEC=BFFE
Q.9. In the figure, $\mathrm{DE} \| \mathrm{OQ}$ and $\mathrm{DF} \| \mathrm{OR}$. Show that $\mathrm{EF} \| \mathrm{QR}$.

Solution:

In $\triangle \mathrm{POQ}$, since $\mathrm{DE} \| \mathrm{OQ}$,
$\mathrm{PEEQ}=\mathrm{PDDO} \quad$...(i) [Using basic proportionality theorem]

In $\triangle \mathrm{POR}$, since $\mathrm{DF} \| \mathrm{OR}$,
$\mathrm{PFFR}=\mathrm{PDDO} \quad$...(ii) [Using basic proportionality theorem]
From i and (ii), we get, $\mathrm{PEEQ}=\mathrm{PFFR}$ Using converse of basic proportionality theorem $\mathrm{EF} \| \mathrm{QR}$

Q.10. In the figure, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.

Q.11. Using Theorem 6.1, prove that a line drawn through the midpoint of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Solution:

Let in the given figure $P Q$ is a line segment drawn through mid-point P of line $A B$ such that $P Q \| B C$ Hence, AP=PB

Now, using basic proportionality theorem
$\mathrm{AQQC}=\mathrm{APPB}$
$\Rightarrow A Q Q C=A P A P$
$\Rightarrow \mathrm{AQQC}=1$
$\Rightarrow A Q=Q C$
Hence, Q is the mid-point of AC .
Q.12. Prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

Solution:

Let in the given figure $P Q$ is a line segment joining mid-points Pand Q of line $A B$ and $A C$ respectively.
Hence, $\mathrm{AP}=\mathrm{PB}$ and $\mathrm{AQ}=\mathrm{QC}$ Now, since $\mathrm{APPB}=\mathrm{APAP}=1$ and $\mathrm{AQQC}=\mathrm{AQAQ}=1$ Hence, $\mathrm{APPB}=\mathrm{AQQC}$ Now, using converse of basic proportionality theorem, we get, $\mathrm{PQ} \| \mathrm{BC}$.
Q.13. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O . Show that $\mathrm{AOBO}=\mathrm{CODO}$

Solution:

Let a line segment EF is drawn through point O such that $\mathrm{EF} \| \mathrm{CD}$
In $\triangle \mathrm{ABC}$ and in $\triangle \mathrm{BDC}, \mathrm{FO} \| \mathrm{AB}$ and $\mathrm{FO}\|\mathrm{CD} \because \mathrm{EF}\| \mathrm{CD}, \mathrm{AB} \| \mathrm{CD}$
So, using basic proportionality theorem
$\mathrm{BFFC}=\mathrm{AOOC}$ \ldots (1) and $\mathrm{BFFC}=\mathrm{BOOD}$
...(2) Now, from equation 1 and (2), we get, $\mathrm{AOOC}=\mathrm{BOOD}$ $\Rightarrow \mathrm{AOBO}=\mathrm{OCOD}$

Exercise 6.3

Q.1. State which pairs of triangles in the figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Solution: Given figures are

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{P}=60^{\circ} \\
& \angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ} \angle \mathrm{C}=\angle \mathrm{R}=40^{\circ} \text { Hence by AAA rule } \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} .
\end{aligned}
$$

Q.2. Are the pairs of triangles in the figure similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Solution:

$\mathrm{BCRP}=2.55=12 \mathrm{CAPQ}=36=12$ Since, $\mathrm{ABQR}=\mathrm{BCRP}=\mathrm{CAPQ}$ Hence, by SSS rule. $\triangle \mathrm{ABC} \sim \triangle \mathrm{QRP}$.
Q.3. State whether the following pair of triangles is similar or not.

Solution: Given figure is:

We know that two triangles are similar if they have, all their angles equal and corresponding sides are in the same ratio. Here, the corresponding sides are not proportional. Hence, the given triangles are not similar.
Q.4. State if the following pairs of triangles in the figure are similar or not. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Solution:

Q.5. State whether the following pair of triangles is similar or not.

Solution:
Given figure is:

We know that two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion. In other words, similar triangles are the same shape, but not necessarily the same size. Here, as the corresponding sides are not in proportional. Hence, the given triangles is not similar.
Q.6. State whether the pair triangles are similar or not. Write the similarity criterion used by you for answering the question and also write the pair of similar triangles in the symbolic form.

Solution:

Now, In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$
since,
$\angle \mathrm{D}=\angle \mathrm{P}=70$ o
$\angle \mathrm{E}=\angle \mathrm{Q}=800$
$\angle \mathrm{F}=\angle \mathrm{R}=30 \mathrm{o}$
Hence, by AAA rule
$\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$
Q.7. $\quad \mathrm{CD}$ and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle A B C \sim \triangle F E G$, show that $C D G H=A C F G$.

NCERT Mathematics

Solution:

In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{FGH}$,
$\angle \mathrm{A}=\angle \mathrm{F}(\because \triangle \mathrm{ABC} \sim \triangle \mathrm{EFG})$
$\angle A C D=\angle F G H$ (angle bisector)
$\angle \mathrm{ADC}=\angle \mathrm{FHG}$ (remaining angle)
Hence, by AAA rule we have:
$\triangle \mathrm{ACD} \sim \triangle \mathrm{FGH}$
So, $\mathrm{CDGH}=\mathrm{ACFG}$ (corresponding sides are proportional)
Q.8. $\quad \mathrm{CD}$ and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$, show that $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$.

Solution:

Since $\triangle A B C \sim \triangle F E G$
Hence, $\angle A=\angle F$
$\angle B=\angle E$
$\angle \mathrm{ACB}=\angle \mathrm{FGE}$
$\Rightarrow \angle \mathrm{ACB} 2=\angle \mathrm{FGE} 2$
And $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (angle bisector)
$\angle \mathrm{BDC}=\angle \mathrm{EHG}$ (remaining Angle)
Hence, by AAA rule we have:
$\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$
Q.9. $\quad \mathrm{CD}$ and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFG}$ respectively. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$, show that $\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$

Solution:

Since $\triangle A B C \sim \triangle F E G$
Hence, $\angle A=\angle F$
$\angle B=\angle E$
$\angle A C B=\angle F G E$
$\Rightarrow \angle \mathrm{ACB} 2=\angle \mathrm{FGE} 2$
$\Rightarrow \angle \mathrm{ACD}=\angle \mathrm{FGH}$ (angle bisector)
$\angle \mathrm{CDA}=\angle \mathrm{GHF}$ (remaining angle)
Hence, by AAA rule we have:
$\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$
Q.10. In the figure given below, E is a point on side CB produced of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.

Solution:

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECF}$,
Since, $\mathrm{AB}=\mathrm{AC}$ (isosceles triangles)
So, $\angle \mathrm{ABD}=\angle \mathrm{ECF}$ (angles opposite to equal sides)
$\angle \mathrm{ADB}=\angle \mathrm{EFC}=90^{\circ}$
$\angle \mathrm{BAD}=\angle \mathrm{CEF}$ (remaining angle)
Hence, by AAA rule we have:
$\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$
Q.11. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of $\triangle \mathrm{PQR}$ in the given figure. Show that $\triangle A B C \sim \triangle P Q R$.

Solution:

Median divides opposite side.
So, $\mathrm{BD}=\mathrm{BC} 2$ and $\mathrm{QM}=\mathrm{QR} 2$
Given that,
$\mathrm{ABPQ}=\mathrm{BCQR}=\mathrm{ADPM}$
So, $\mathrm{ABPQ}=\mathrm{BDQM}=\mathrm{ADPM}(\because \mathrm{BC}=2 \times \mathrm{BD}, \mathrm{QR}=2 \times \mathrm{QM})$.
Hence, $\triangle A B D \sim \triangle P Q M$.
So, $\angle \mathrm{ABD}=\angle \mathrm{PQM}=\angle \mathrm{PQR}$ (corresponding angles of similar triangles)
And $\mathrm{ABPQ}=\mathrm{BCQR}$
Hence, $\triangle A B C \sim \triangle P Q R$.
Q.12. D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $\mathrm{CA} 2=\mathrm{CB} . \mathrm{CD}$.

Solution:

In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{BAC}$
It is given that $\angle A D C=\angle B A C$
$\angle \mathrm{ACD}=\angle \mathrm{BCA}$ (common angle)
$\angle \mathrm{CAD}=\angle \mathrm{CBA}$ (remaining angle)
Hence, by AAA rule we have:
$\triangle A D C \sim \triangle B A C$
So, by corresponding sides of similar triangles will be proportional to each other.
$\mathrm{CACB}=\mathrm{CDCA}$
Hence, CA2=CB \times CD.
Q.13. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR . Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Let us extend $A D$ and $P M$ up to point E and L respectively such that $A D=D E$ and $P M=M L$. Now join B to E, C to E, Q to L and R to L . We know that medians divide opposite sides. $\mathrm{So}, \mathrm{BD}=\mathrm{DC}$ and $\mathrm{QM}=\mathrm{MR}$ Also, $\mathrm{AD}=\mathrm{DE}$ (by construction) And $\mathrm{PM}=\mathrm{ML}$ (By construction) So, in quadrilateral ABEC , diagonals AE and BC bisects each other at point D. Also, in quadrilateral PQLR, diagonals PL and QR bisects each other at point M. So, quadrilaterals ABED and PQLR are parallelograms. $\mathrm{AC}=\mathrm{BE}$ and $\mathrm{AB}=\mathrm{EC}$ (Since it is a parallelogram, opposite sides will be equal) Also $\mathrm{PR}=\mathrm{QL}$ and $\mathrm{PQ}=\mathrm{LR}$ (Since it is a parallelogram, opposite sides will be equal)

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{PQL}$,
$\mathrm{ABPQ}=\mathrm{BEQL}=\mathrm{AEPL}(\mathrm{ACPR}=\mathrm{BEQL}$ and $\mathrm{ADPM}=2 \mathrm{AD} 2 \mathrm{PM}=\mathrm{AEPL})$
Hence, by SSS rule, $\triangle \mathrm{ABE} \sim \triangle \mathrm{PQL}$ Similarly, $\triangle \mathrm{AEC} \sim \triangle \mathrm{PLR}$ Hence, $\angle \mathrm{BAE}=\angle \mathrm{QPL}$ and $\angle \mathrm{EAC}=\angle \mathrm{LPR}$ Hence, $\angle B A C=\angle Q P R$ Now, in $\triangle A B C$ and $\triangle P Q R, A B P Q=A C P R$ and $\angle B A C=\angle Q P R$ Hence, by SAS rule, $\triangle A B C \sim \triangle P Q R$
Q.14. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Solution:

Let AB be a tower and CD be a pole
Shadow of AB is BE . Shadow of CD is DF . The sun ray will fall on tower and pole at same angle. $\therefore \angle \mathrm{DCF}=\angle \mathrm{BAE}$ and $\angle D F C=\angle B E A \angle C D F=\angle A B E=90$ o(Tower and pole are vertical to ground) Hence, by $A A A$ rule, $\triangle A B E \sim \triangle C D F$ Therefore $\mathrm{ABCD}=\mathrm{BEDF} \Rightarrow \mathrm{AB} 6=284 \Rightarrow \mathrm{AB}=42$ Hence, the height of the tower $=42$ meters.
Q.15. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, prove that $A B P Q=A D P M$

Solution:

Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Thus, their respective sides will be in proportion $\mathrm{Or}, \mathrm{ABPQ}=\mathrm{ACPR}=\mathrm{BCQR}$
..(1) Also,
$\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R \ldots$ (2) Since, $A D$ and $P M$ are medians, they will divide their opposite sides equally. Hence, $\mathrm{BD}=\mathrm{BC} 2$ and $\mathrm{QM}=\mathrm{QR} 2 \ldots$ (3)

From equation 1 and (3)
$\mathrm{ABPQ}=\mathrm{BDQM}$
$\angle B=\angle Q$ (From equation 2) Hence, by SAS rule, $\triangle A B D \sim \triangle P Q M$ Hence, $A B P Q=A D P M$ (Corresponding sides are proportional)
Q.16. In the following figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$.

Solution:

Since DOB is a straight line
Hence, $\angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ}$ linear pair $\Rightarrow \angle \mathrm{DOC}=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle \mathrm{DOC}$,
$\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}$ (Angle sum property)
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ} . \Rightarrow \angle \mathrm{DCO}=55^{\circ}$ Since, $\triangle \mathrm{ODC} \sim \Delta \mathrm{OBA}$. Thus,
$\angle \mathrm{OCD}=\angle \mathrm{OAB}$ Corresponding angles equal in similar triangles Hence, $\angle \mathrm{OAB}=55^{\circ}$.
Q.17. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\mathrm{OAOC}=\mathrm{OBOD}$

Solution:

In $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$
$A B \| C D$
Hence, $\angle \mathrm{CDO}=\angle \mathrm{ABO}$ [Alternate interior angles] $\angle \mathrm{DCO}=\angle \mathrm{BAO} \quad$ [Alternate interior angles] $\angle \mathrm{DOC}=\angle \mathrm{BOA}$
[Vertically opposite angles] Hence, $\triangle \mathrm{DOC} \sim \triangle \mathrm{BOA}$ Using AAA rule $\Rightarrow \mathrm{DOBO}=\mathrm{OCOA}$
[Corresponding sides are proportional $] \Rightarrow \mathrm{OAOC}=\mathrm{OBOD}$
Q.18. In the figure given below $\mathrm{QRQS}=\mathrm{QTPR}$ and $\angle 1=\angle 2$. Show that $\triangle \mathrm{PQS} \sim \triangle \mathrm{TQR}$.

Solution:

In $\triangle P Q R$,
$\angle P Q R=\angle P R Q$ Hence, $P Q=P R \ldots$ (i) $\mathrm{QRQS}=\mathrm{QTPR} \ldots$...(given) Using (i), we get: $\mathrm{QRQS}=\mathrm{QTPQ} \ldots$. (ii) Also, $\angle \mathrm{RQT}=\angle \mathrm{PQS}=\angle 1$. Hence, by SAS rule $\triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$.
Q.19. S and T are points on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \triangle R T S$.

Solution:

In $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$
$\angle \mathrm{QPR}=\angle \mathrm{RTS}$ [Given] $\angle \mathrm{R}=\angle \mathrm{R}$ [Common angle] $\angle \mathrm{RQP}=\angle \mathrm{RST}$ [Remaining angle] Hence, $\triangle \mathrm{RPQ} \sim \triangle \mathrm{RTS}$ [by AAA rule]
Q.20. In Fig. if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.

Solution:

Since $\triangle \mathrm{ABE} \cong \triangle A C D$
Therefore, $\mathrm{AB}=\mathrm{AC} \ldots(1) \Rightarrow \mathrm{AD}=\mathrm{AE} \ldots$ (2) Now, in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$, Dividing equation 2by (1) $\mathrm{ADAB}=\mathrm{AEAC}$ $\angle A=\angle A$ [Common angle] Hence, $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [by SAS rule]
Q.21. In the following figure altitudes AD and CE of $\triangle \mathrm{ABC}$ intersect each other at the point P . Show that $\triangle \mathrm{AEP} \sim \Delta \mathrm{CDP}$.

Solution:

In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$ $\angle C D P=\angle A E P=90^{\circ}$
$\angle \mathrm{CPD}=\angle \mathrm{APE}$ (vertically opposite angles)
$\angle \mathrm{PCD}=\angle \mathrm{PAE}$ (remaining angle)
Hence, by AAA rule we have:
$\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
Q.22. In the figure, altitudes AD and CE of $\triangle \mathrm{ABC}$ intersect each other at the point P. Show that $\triangle \mathrm{ABD} \sim \Delta \mathrm{CBE}$.

Solution:

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$
$\angle A D B=\angle C E B=90 \circ$
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (Common angle)
$\angle \mathrm{DAB}=\angle \mathrm{ECB}$ (Remaining angle)
Hence, by AAA rule,
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
Q.23. In Fig. altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that $\triangle A E P \sim \triangle A D B$.

Solution:

In $\triangle \mathrm{AEPand} \triangle \mathrm{ADB}$
$\angle \mathrm{AEP}=\angle \mathrm{ADB}=90{ }^{\circ}$
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common angle)
$\angle \mathrm{APE}=\angle \mathrm{ABD}$ (Remaining angle)
Hence, by AAA rule,
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
Q.24. In the figure, altitudes AD and CE of $\triangle \mathrm{ABC}$ intersect each other at the point P . Show that $\triangle \mathrm{PDC} \sim \Delta \mathrm{BEC}$.

Solution:

In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$
$\angle P D C=\angle B E C=90 \circ$
$\angle \mathrm{BCE}=\angle \mathrm{PCD}$ (Common angle)
$\angle \mathrm{CPD}=\angle \mathrm{CBE}$ (Remaining angle)
Hence, by AAA rule,
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$
Q.25. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \triangle C F B$.

Solution:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (alternate interior angles as $\mathrm{AE} \| \mathrm{BC}$)
$\angle \mathrm{ABE}=\angle \mathrm{CFB}$ (alternate interior angles as $\mathrm{AB} \| \mathrm{DC}$)
Hence, by AAA rule we have:
$\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$
Q.26. In the figure, ABC and AMP are two right triangles, right-angled at B and M respectively. Prove that $\Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$
$\angle \mathrm{ABC}=\angle \mathrm{AMP}=900 \angle \mathrm{~A}=\angle \mathrm{A}$ (Common angle) $\angle \mathrm{ACB}=\angle \mathrm{APM}$ (Remaining angle) Hence, by AAA rule, $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
Q.27. In the figure, ABC and AMP are two right triangles, right-angled at B and M respectively. Prove that: CAPA=BCMP

Solution:
Given figure is,

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$
$\angle A B C=\angle A M P=90 \circ$
$\angle A=\angle A$ (Common angle)
$\angle A C B=\angle A P M$ (Remaining angle) Hence, by AAA rule, $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ Hence, $\mathrm{CAPA}=\mathrm{BCMP}$ (Corresponding sides are proportional)

Exercise 6.4

Q.1. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be 64 cm 2 and 121 cm 2 respectively. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC .

Solution: \quad Given, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
We have,
$\operatorname{area}(\triangle \mathrm{ABC}) \operatorname{area}(\triangle \mathrm{DEF})=\mathrm{ABDE} 2=\mathrm{BCEF} 2=\mathrm{ACDF} 2$ Since $\mathrm{EF}=15.4$, area $\triangle \mathrm{ABC}=64$, area $\triangle \mathrm{DEF}=121$. Hence, $64121=\mathrm{BC} 215.42 \Rightarrow \mathrm{BC} 15.4=811 \Rightarrow \mathrm{BC}=8 \times 15.411=8 \times 1.4=11.2 \mathrm{~cm}$. Thus, $\mathrm{BC}=11.2 \mathrm{~cm}$.
Q.2. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD.

Solution:

Since $A B \| C D$,
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior angles) $\angle \mathrm{OBA}=\angle \mathrm{ODC}$ (Alternate interior angles) $\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Vertically opposite angles) Hence, by AAA rule, $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD} \Rightarrow \operatorname{area}(\triangle \mathrm{AOB}) \operatorname{area}(\triangle \mathrm{COD})=\mathrm{ABCD} 2$ Since $\mathrm{AB}=2 \mathrm{CD}$, $\operatorname{area}(\triangle \mathrm{AOB}) \operatorname{area}(\triangle \mathrm{COD})=41=4: 1$ Hence, the ratio of the areas of triangles AOB and COD is $4: 1$.
Q.3. In the figure, ABC and DBC are two triangles on the same base BC . If AD intersects BC at O , show that $\operatorname{ar} \mathrm{ABCarDBC}=\mathrm{AODO}$.

Solution: \quad We know that the area of a triangle $=12 \times$ Base \times height Since $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are on same base,

Hence, ratio of their areas will be same as ratio of their heights.
Let us draw two perpendiculars AP and DM on BC.

In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$
$\angle \mathrm{APO}=\angle \mathrm{DMO}=90 \mathrm{o}, \angle \mathrm{AOP}=\angle \mathrm{DOM}$ (Vertically opposite angles)
$\angle \mathrm{OAP}=\angle \mathrm{ODM}$ (Remaining angle)
Hence, by AAA rule
$\Delta \mathrm{APO} \sim \Delta \mathrm{DMO}$
Hence, $A P D M=A O D O$ Hence, $\operatorname{area}(\triangle A B C) \operatorname{area}(\triangle D B C)=A P D M=A O D O$
Q.4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Let us assume that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
Now, area $(\triangle \mathrm{ABC})$ area $(\triangle \mathrm{PQR})=\mathrm{ABPQ} 2=\mathrm{BCQR} 2=\mathrm{ACPR} 2$
Since, area $\triangle A B C=$ area $(\triangle P Q R)$
Hence, $A B=P Q$
$\mathrm{BC}=\mathrm{QR}$
$\mathrm{AC}=\mathrm{PR}$
Since, corresponding sides of two similar triangles are of same length.
Hence, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ (by SSS rule)
Q.5. $\quad D, E$ and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

NCERT Mathematics

Solution:

Since D and E are mid-points of $A B$ and $B C$ of $\triangle A B C$ Hence, DE\|AC and DE=12AC (by mid-point theorem)
Similarly, $\mathrm{EF}=12 \mathrm{AB}$ and $\mathrm{DF}=12 \mathrm{BC}$
Now in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFD}$
$\mathrm{ABEF}=\mathrm{BCFD}=\mathrm{CADE}=2$
Therefore, by SSS rule, $\triangle \mathrm{ABC} \sim \Delta \mathrm{EFD}$
Hence, area $(\triangle \mathrm{ABC}) \operatorname{area}(\triangle \mathrm{DEF})=\mathrm{ACDE} 2=4 \Rightarrow \operatorname{area}(\triangle \mathrm{DEF}) \operatorname{area}(\triangle \mathrm{ABC})=14=1: 4$
Q.6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Solution:

Let us assume that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$. Let AD and PS be the medians of these triangles.
So, $\mathrm{ABPQ}=\mathrm{BCQR}=\mathrm{ACPR} \ldots 1$
$\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R}$
Since, AD and PS are medians
$\mathrm{So}, \mathrm{BD}=\mathrm{DC}=\mathrm{BC} 2$ and $\mathrm{QS}=\mathrm{SR}=\mathrm{QR} 2$ So, equation 1 becomes $\mathrm{ABPQ}=\mathrm{BDQS}=\mathrm{ACPR}$ Now in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQS} \angle \mathrm{B}=\angle \mathrm{Q}$ and, $\mathrm{ABPQ}=\mathrm{BDQS}$

Hence, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQS}$
Hence, $\mathrm{ABPQ}=\mathrm{BDQS}=\mathrm{ADPS} . . .2$
Since, area $(\triangle \mathrm{ABC})$ area $\triangle \mathrm{PQR}=\mathrm{ABPQ} 2 \Rightarrow$ area $\triangle \mathrm{ABCarea} \triangle \mathrm{PQR}=\mathrm{ADPS} 2$ [from equation (2)]
Q.7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution:

Let ABCD be a square of side a . Therefore, it's diagonal $=2 \mathrm{a}$.
Let $\triangle \mathrm{ABE}$ and $\triangle \mathrm{DBF}$ are two equilateral triangles. Hence, $\mathrm{AB}=\mathrm{AE}=\mathrm{BE}=\mathrm{a}$ and $\mathrm{DB}=\mathrm{DF}=\mathrm{BF}=2 \mathrm{a}$. We know that all angles of equilateral triangles are 60 o .

Hence, all equilateral triangles are similar to each other.
Hence, ratio of areas of these triangles will be equal to the square of the ratio between sides of these triangles.
area of $\triangle \mathrm{ABEarea}$ of $\triangle \mathrm{DBF}=\mathrm{a} 2 \mathrm{a} 2=12$ Hence, area of $\triangle \mathrm{ABE}=12($ area of $\triangle \mathrm{DBF})$.
Q.8. ABC and BDE are two equilateral triangles such that D is the midpoint of BC . Ratio of the areas of triangles ABC and BDE is 2:11:24:1

Solution:

Since, all angle of equilateral triangles are 600 , all equilateral triangles are similar to each other.
Therefore, ratio between areas of these triangles will be equal to the square of the ratio between sides of these triangles.
Let side of $\triangle \mathrm{ABC}=\mathrm{a}$ Therefore, side of $\triangle \mathrm{BDE}=\mathrm{a} 2$ Hence, area $\triangle \mathrm{ABCarea} \triangle \mathrm{BDE}=\mathrm{aa} 22=41=4: 1$
1:4
Q.9. Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio 2:34:981:1616:81

Solution: We know that,
If two triangles are similar to each other, the ratio between areas of these triangles will be equal to the square of the ratio between sides of these triangles.

Given that sides are in the ratio 4:9. Hence, ratio between areas of these triangles $=492=1681=16: 81$.

Exercise 6.5

Q.1. Sides of a triangle are given below. Determine if it is a right triangle. In case of a right triangle, write the length of its hypotenuse. $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

Solution: \quad Given that sides are $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm .
Squaring the lengths of these sides we get 49,576 and 625.
Clearly, $49+576=625$ or $72+242=252$. The given triangle satisfies Pythagoras theorem. So, it is a right triangle. We know that the longest side in a right triangle is the hypotenuse. Hence, length of hypotenuse $=25 \mathrm{~cm}$.
Q.2. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
$3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$

Solution: Given that sides are $3 \mathrm{~cm}, 8 \mathrm{~cm}$ and 6 cm .
Here, $64 \neq 36+9$
Clearly, sum of squares of lengths of two sides is not equal to square of length of third side. Hence, given triangle is not satisfying Pythagoras theorem. So, it is not a right triangle.
Q.3. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
$50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$

Solution: Given that sides are $50 \mathrm{~cm}, 80 \mathrm{~cm}$ and 100 cm .
Here, $10000 \neq 6400+2500$
Clearly, sum of squares of lengths of two sides is not equal to square of length of third side. Therefore, given triangle is not satisfying Pythagoras theorem. So, it is not a right triangle.
Q.4. The sides of a triangle are given below. Determine whether it is a right triangle. In case of a right triangle, write the length of its hypotenuse.
$13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$.
Solution: Given that sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$ and 5 cm .
Squaring the lengths of these sides we may get 169,144 and 25 .
We know that, $144+25=169$ or $122+52=132$. So, by converse of Pythagoras theorem, it is a right triangle. As we know that the longest side in a right triangle is the hypotenuse. Hence, length of hypotenuse $=13 \mathrm{~cm}$.
Q.5. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Solution:

Let OB be the pole and AB be the wire.
Therefore, by Pythagoras theorem we have:
$\mathrm{AB} 2=\mathrm{OB} 2+\mathrm{OA} 2$
$\Rightarrow 242=182+\mathrm{OA} 2$
$\Rightarrow \mathrm{OA} 2=576-324$
$\Rightarrow \mathrm{OA}=252=6 \times 6 \times 7=67$
Therefore, distance from base $=67 \mathrm{~m}$
Q.6. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after 112 hours?

Solution:

Distance traveled by the plane flying towards north in 112 hrs
$=1,000 \times 112=1,500 \mathrm{~km}$
Distance traveled by the plane flying towards west in $112 \mathrm{hrs}=1,200 \times 112=1,800 \mathrm{~km}$
Let these distances are represented by OA and OB respectively.
Now applying Pythagoras theorem
Distance between these planes after $112 \mathrm{hrs}, \mathrm{AB}=\mathrm{OA} 2+\mathrm{OB} 2=1,5002+1,8002=2250000+3240000$
$=5490000=9 \times 610000=30061$ So, distance between these planes will be 30061 km . after 112 hrs .
Q.7. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

Solution:

Let $C D$ and $A B$ be the poles of height 11 m and 6 m .
Therefore, $C P=11-6=5 \mathrm{~m}$
From the figure we may observe that $\mathrm{AP}=12 \mathrm{~m}$
In $\triangle \mathrm{APC}$, by applying Pythagoras theorem we get:
$\mathrm{AP} 2+\mathrm{PC} 2=\mathrm{AC} 2$
$\Rightarrow 122+52=\mathrm{AC} 2$
$\Rightarrow A C 2=144+25=169$
$\Rightarrow A C=13$
Therefore, the distance between their tops $=13 \mathrm{~m}$.
Q.8. $\quad \mathrm{D}$ and E are points on the sides CA and CB respectively of a triangle ABC right-angled at C . Prove that $\mathrm{AE} 2+\mathrm{BD} 2=\mathrm{AB} 2+\mathrm{DE} 2$.

T Mathematics
Solution:

In $\triangle \mathrm{ACE}$, $\mathrm{AC} 2+\mathrm{CE} 2=\mathrm{AE} 2 \ldots \mathrm{i}$
In $\triangle B C D$,
$\mathrm{BC} 2+\mathrm{CD} 2=\mathrm{BD} 2 \ldots$..ii
Adding i and (ii) we get:
$\mathrm{AC} 2+\mathrm{CE} 2+\mathrm{BC} 2+\mathrm{CD} 2=\mathrm{AE} 2+\mathrm{BD} 2 \ldots$ (iii)
$\Rightarrow \mathrm{CD} 2+\mathrm{CE} 2+\mathrm{AC} 2+\mathrm{BC} 2=\mathrm{AE} 2+\mathrm{BD} 2$
In $\triangle \mathrm{CDE}$,
DE2=CD2+CE2
In $\triangle \mathrm{ABC}$,
$\mathrm{AB} 2=\mathrm{AC} 2+\mathrm{CB} 2$
Adding both equations and comparing with equation (iii), we get: $\mathrm{DE} 2+\mathrm{AB} 2=\mathrm{AE} 2+\mathrm{BD} 2$
Q.9. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$. Prove that $2 A B 2=2 A C 2+B C 2$.

Solution: Given that, $3 \mathrm{DC}=\mathrm{DB}$.
$\mathrm{DC}=\mathrm{BC} 4 \mathrm{DB}: \mathrm{DC}=3: 1 \ldots 1$
and $\mathrm{DB}=3 \mathrm{BC} 4 \ldots 2$
In $\triangle \mathrm{ACD}$,
$\mathrm{AC} 2=\mathrm{AD} 2+\mathrm{DC} 2$
AD2 $=$ AC2-DC2 $\ldots 3$
In $\triangle \mathrm{ABD}$,
$\mathrm{AB} 2=\mathrm{AD} 2+\mathrm{DB} 2$
AD2=AB2-DB2 $\ldots 4$
From equation (3) and 4
AC2-DC2 $=A B 2-D B 2$
Since, given that $3 \mathrm{DC}=\mathrm{DB}$
$\mathrm{AC} 2-\mathrm{BC} 42=\mathrm{AB} 2-3 \mathrm{BC} 42$ (from 1and 2)
$\Rightarrow \mathrm{AC} 2-\mathrm{BC} 216=\mathrm{AB} 2-9 \mathrm{BC} 216$
$\Rightarrow 16 \mathrm{AC} 2-\mathrm{BC} 2=16 \mathrm{AB} 2-9 \mathrm{BC} 2$
$\Rightarrow 16 \mathrm{AB} 2-16 \mathrm{AC} 2=8 \mathrm{BC} 2$
$\Rightarrow 2 \mathrm{AB} 2=2 \mathrm{AC} 2+\mathrm{BC} 2$
Q.10. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=13 B C$. Prove that $9 A D 2=7 A B 2$.

Solution:

Let side of equilateral triangle be a and AE be the altitude of $\triangle \mathrm{ABC}$
So, $\mathrm{BE}=\mathrm{EC}=\mathrm{BC} 2=\mathrm{a} 2$
and, $\mathrm{AE}=\mathrm{a} 32$ Given that $\mathrm{BD}=13 \mathrm{BC}=\mathrm{a} 3 \mathrm{So}, \mathrm{DE}=\mathrm{BE}-\mathrm{BD}=\mathrm{a} 2-\mathrm{a} 3=\mathrm{a} 6$ Now, in $\triangle \mathrm{ADE}$, by applying Pythagoras theorem $\mathrm{AD} 2=\mathrm{AE} 2+\mathrm{DE} 2 \Rightarrow \mathrm{AD} 2=\mathrm{a} 322+\mathrm{a} 62=3 \mathrm{a} 24+\mathrm{a} 236=28 \mathrm{a} 236$ or, $9 \mathrm{AD} 2=7 \mathrm{AB} 2$
Q.11. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Solution:

Let side of equilateral triangle be a. And $A E$ be the altitude of $\triangle A B C$
$\mathrm{So}, \mathrm{BE}=\mathrm{EC}=\mathrm{BC} 2=\mathrm{a} 2$ Now in $\triangle \mathrm{ABE}$ by applying Pythagoras theorem $\mathrm{AB} 2=\mathrm{AE} 2+\mathrm{BE} 2 \Rightarrow \mathrm{a} 2=\mathrm{AE} 2+\mathrm{a} 22 \Rightarrow \mathrm{AE} 2=\mathrm{a} 2-\mathrm{a} 24$ $\Rightarrow \mathrm{AE} 2=3 \mathrm{a} 24 \Rightarrow 4 \mathrm{AE} 2=3 \mathrm{a} 2$ or, $4 \mathrm{AE} 2=3 \times$ square of one side.
Q.12. In $\triangle \mathrm{ABC}, \mathrm{AB}=63 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. The angle B is 120060o90o

Solution:

Given that $\mathrm{AB}=63 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$
We may observe that
$A B 2=108, A C 2=144$ and $B C 2=36, A B 2+B C 2=A C 2$ Thus, the given $\triangle A B C$ is satisfying Pythagoras theorem. Therefore, the triangle is a right angle triangle right-angled at B Therefore, $\angle \mathrm{B}=90^{\circ}$.

450
Q.13. $P Q R$ is a triangle right-angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M 2=Q M . M R$.

Solution:

Let $\angle M P R=x$
In \triangle MPR $\angle M R P=1800-900-x \Rightarrow \angle M R P=900-x$ Similarly in $\triangle M P Q \angle M P Q=900-\angle M P R=900-x \angle M Q P=180 o-900-900-x$ $\Rightarrow \angle \mathrm{MQP}=\mathrm{x}$

Now in $\triangle \mathrm{MPQ}$ and $\triangle \mathrm{MRP}$, we may observe that
$\angle M P Q=\angle M R P$
$\angle \mathrm{PMQ}=\angle \mathrm{RMP} \angle \mathrm{MQP}=\angle \mathrm{MPR}$ Hence, by AAA rule, $\triangle \mathrm{MPQ} \sim \triangle \mathrm{MRP}$ Hence, $\mathrm{QMPM}=\mathrm{MPMR} \Rightarrow \mathrm{PM} 2=\mathrm{QM} . \mathrm{MR}$

Chapter 6 Triangles
Q.14. In the figure given below, ABD is a triangle right-angled at A and $\mathrm{AC} \perp \mathrm{BD}$. Show that $\mathrm{AB} 2=\mathrm{BC} \cdot \mathrm{BD}$.

Solution:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$, $\angle \mathrm{CBA}=\angle \mathrm{DBA}$ (common angles) $\angle B C A=\angle B A D=90^{\circ}$
$\angle \mathrm{BAC}=\angle \mathrm{BDA}$ (remaining angle)
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{ABD}$ (by AAA)
$\therefore \mathrm{ABBD}=\mathrm{BCAB}$
$\Rightarrow A B 2=B C \cdot B D$
Q.15. In the figure, $A B D$ is a triangle right-angled at A and $A C \perp B D$. Show that $A C 2=B C \cdot D C$

Solution:
Let $\angle \mathrm{CAB}=\mathrm{x}$
In $\triangle \mathrm{CBA}$
$\angle C B A=1800-900-x \angle C B A=900-x$ Similarly in $\triangle C A D \angle C A D=900-\angle C A B=900-x \angle C D A=1800-90 o-(900-x)$ $\angle C D A=x$.

Now in $\triangle C B A$ and $\triangle C A D$, we may observe that
$\angle \mathrm{CBA}=\angle \mathrm{CAD}$
$\angle \mathrm{CAB}=\angle \mathrm{CDA} \angle \mathrm{ACB}=\angle \mathrm{DCA}=90$ o Therefore $\triangle \mathrm{CBA} \sim \triangle \mathrm{CAD}$ (by AAA rule) Therefore, $\mathrm{ACDC}=\mathrm{BCAC}$ $\Rightarrow \mathrm{AC} 2=\mathrm{DC} \times \mathrm{BC}$.
Q.16. In Fig. ABD is a triangle right-angled at A and $\mathrm{AC} \perp \mathrm{BD}$. Show that $\mathrm{AD} 2=\mathrm{BD} \cdot \mathrm{CD}$

NCERT Mathematics

Solution:	In $\triangle \mathrm{DCA} \& \triangle \mathrm{DAB}$
	$\angle \mathrm{DCA}=\angle \mathrm{DAB}=90^{\circ}$
	$\angle \mathrm{CDA}=\angle \mathrm{ADB}$ (Common angle) 6 Triangles
	$\angle \mathrm{DAC}=\angle \mathrm{DBA}$ (remaining angle)
	$\triangle \mathrm{DCA} \sim \triangle \mathrm{DAB}$ (by AAA property)
	Therefore, $\mathrm{DCDA}=\mathrm{DADB}$
	$\Rightarrow \mathrm{AD} 2=\mathrm{BD} \times \mathrm{CD}$

Q.17. $\quad \mathrm{ABC}$ is an isosceles triangle right-angled at C . Prove that $\mathrm{AB} 2=2 \mathrm{AC} 2$.

Solution:

Given that $\triangle \mathrm{ABC}$ is an isosceles triangle.
Therefore, $\mathrm{AC}=\mathrm{CB}$ Applying Pythagoras theorem in $\triangle \mathrm{ABC}$ (i.e. right-angled at point C) $\mathrm{AC} 2+\mathrm{CB} 2=\mathrm{AB} 2$ $\Rightarrow 2 \mathrm{AC} 2=\mathrm{AB} 2($ as $\mathrm{AC}=\mathrm{CB})$
Q.18. $A B C$ is an isosceles triangle with $A C=B C$. If $A B 2=2 A C 2$, prove that $A B C$ is a right triangle.

Solution:

Given that $\mathrm{AB} 2=2 \mathrm{AC} 2$
$\Rightarrow A B 2=A C 2+A C 2 \Rightarrow A B 2=A C 2+B C 2($ as $A C=B C)$ Therefore, by converse of Pythagoras theorem, given triangle is a right-angled triangle.
Q.19. ABC is an equilateral triangle of side 2 a . Find each of its altitudes.

Solution:

Let AD be the altitude in given equilateral $\triangle \mathrm{ABC}$.
We know that altitude bisects the opposite side. $\mathrm{So}, \mathrm{BD}=\mathrm{DC}=\mathrm{a}$ in $\triangle \mathrm{ADB} \angle \mathrm{ADB}=90$ o
Now applying Pythagoras theorem
$\mathrm{AD} 2+\mathrm{BD} 2=\mathrm{AB} 2$
$\Rightarrow A D 2+a 2=2 a 2 \Rightarrow A D 2+a 2=4 a 2 \Rightarrow A D 2=3 a 2 \Rightarrow A D=a 3$ Since in an equilateral triangle, all the altitudes are equal in length. So, length of each altitude will be 3 a
Q.20. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Solution:

In $\triangle \mathrm{AOB}, \triangle \mathrm{BOC}, \triangle \mathrm{COD}, \triangle \mathrm{AOD}$
Applying Pythagoras theorem
$\mathrm{AB} 2=\mathrm{AO} 2+\mathrm{OB} 2$
$\mathrm{BC} 2=\mathrm{BO} 2+\mathrm{OC} 2$
$\mathrm{CD} 2=\mathrm{CO} 2+\mathrm{OD} 2$
$\mathrm{AD} 2=\mathrm{AO} 2+\mathrm{OD} 2$
Adding all these equations,
$\mathrm{AB} 2+\mathrm{BC} 2+\mathrm{CD} 2+\mathrm{AD} 2=2 \mathrm{AO} 2+\mathrm{OB} 2+\mathrm{OC} 2+\mathrm{OD} 2$
$=2 \mathrm{AC} 22+\mathrm{BD} 22+\mathrm{AC} 22+\mathrm{BD} 22$ (diagonals bisect each other.)
$=2 \mathrm{AC} 22+\mathrm{BD} 22$
$=\mathrm{AC} 2+\mathrm{BD} 2$
Q.21. In Fig. 6.54, O is a point in the interior of a triangle $\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that $\mathrm{OA} 2+\mathrm{OB} 2+\mathrm{OC} 2-\mathrm{OD} 2-\mathrm{OE} 2-\mathrm{OF} 2=\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{CE} 2$,

Solution:

In $\triangle \mathrm{AOF}$
Applying Pythagoras theorem
OA2 $=0$ F2 +AF 2
Similarly in $\triangle B O D$
$\mathrm{OB} 2=\mathrm{OD} 2+\mathrm{BD} 2$
similarly in $\triangle \mathrm{COE}$
$\mathrm{OC} 2=\mathrm{OE} 2+\mathrm{EC} 2$
Adding these equations
$\mathrm{OA} 2+\mathrm{OB} 2+\mathrm{OC} 2=\mathrm{OF} 2+\mathrm{AF} 2+\mathrm{OD} 2+\mathrm{BD} 2+\mathrm{OE} 2+\mathrm{EC} 2$
$\Rightarrow \mathrm{OA} 2+\mathrm{OB} 2+\mathrm{OC} 2-\mathrm{OD} 2-\mathrm{OE} 2-\mathrm{OF} 2=\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{EC} 2$
Q.22. In Fig. O is a point in the interior of a triangle $\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that $\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{CE} 2=\mathrm{AE} 2+\mathrm{CD} 2+\mathrm{BF} 2$.

Solution:

In $\triangle \mathrm{AOF}$
Applying Pythagoras theorem
$\mathrm{OA} 2=\mathrm{OF} 2+\mathrm{AF} 2$
Similarly in $\triangle \mathrm{BOD}$
$\mathrm{OB} 2=\mathrm{OD} 2+\mathrm{BD} 2$
similarly in $\triangle \mathrm{COE}$
$\mathrm{OC} 2=\mathrm{OE} 2+\mathrm{EC} 2$
Adding these equations
$\mathrm{OA} 2+\mathrm{OB} 2+\mathrm{OC} 2=\mathrm{OF} 2+\mathrm{AF} 2+\mathrm{OD} 2+\mathrm{BD} 2+\mathrm{OE} 2+\mathrm{EC} 2$
$\Rightarrow \mathrm{OA} 2+\mathrm{OB} 2+\mathrm{OC} 2-\mathrm{OD} 2-\mathrm{OE} 2-\mathrm{OF} 2=\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{EC} 2$
From above result
$\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{EC} 2=\mathrm{OA} 2-\mathrm{OE} 2+\mathrm{OC} 2-\mathrm{OD} 2+\mathrm{OB} 2-\mathrm{OF} 2$
Therefore, $\mathrm{AF} 2+\mathrm{BD} 2+\mathrm{EC} 2=\mathrm{AE} 2+\mathrm{CD} 2+\mathrm{BF} 2$
Q.23. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Solution:

Let OA be the wall and AB be the ladder.
Therefore by Pythagoras theorem,
$\mathrm{AB} 2=\mathrm{OA} 2+\mathrm{BO} 2$
$\Rightarrow 102=82+\mathrm{OB} 2$
$\Rightarrow 100=64+\mathrm{OB} 2$
$\Rightarrow \mathrm{OB} 2=36$
$\Rightarrow \mathrm{OB}=6$
Therefore, distance of foot of ladder from of the wall $=6 \mathrm{~m}$

Exercise 6.6

Q.1. In the given figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle \mathrm{PQR}$. Prove that $\mathrm{QSSR}=\mathrm{PQPR}$.

Solution:

Given that, PS is angle bisector of $\angle \mathrm{QPR}$.
Construct a line RT parallel to SP which meets QP produced at $\mathrm{T} . \angle \mathrm{QPS}=\angle \mathrm{SPR}$
.....(1) $\angle \mathrm{SPR}=\angle \mathrm{PRT}$
(As PS\|TR, alternate interior angles) $\quad \ldots .(2) \angle \mathrm{QPS}=\angle \mathrm{QTR} \quad$ (As PS $\| \mathrm{TR}$, corresponding angles)
.....(3) Using these equations, we may find $\angle \mathrm{PRT}=\angle \mathrm{QTR}$ from (2) and (3) So, $\mathrm{PT}=\mathrm{PR} \quad$ (Since $\triangle \mathrm{PTR}$ is isosceles triangle)

Now in $\triangle \mathrm{QPS}$ and $\triangle \mathrm{QTR}, \angle \mathrm{QSP}=\angle \mathrm{QRT} \quad$ (As PS $\| \mathrm{TR}$)
$\angle \mathrm{QPS}=\angle \mathrm{QTR} \quad$ (As PS \| TR)
$\angle \mathrm{Q}$ is common. $\Delta \mathrm{QPS} \sim \Delta \mathrm{QTR}$ $\Rightarrow \mathrm{QSSR}=\mathrm{QPPT} \Rightarrow \mathrm{QSSR}=\mathrm{PQPR}$
(by AAA property) So, $\mathrm{QRQS}=\mathrm{QTQP} \Rightarrow \mathrm{QRQS}-1=\mathrm{QTQP}-1 \Rightarrow \mathrm{SRQS}=\mathrm{PTQP}$

Q.2. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her

Solution:

Let AB be the height of tip of fishing rod from water surface and BC be the horizontal distance of fly from the tip of fishing rod.

Then, $A C$ is the length of string. $A C$ can be found by applying Pythagoras theorem in $\triangle A B C . A C 2=A B 2+B C 2$ $\mathrm{AC} 2=1.82+2.42 \mathrm{AC} 2=3.24+5.76 \mathrm{AC} 2=9.00$ Thus, length of string out is 3 m .

Now, she pulls string at rate of 5 cm per second.
So, string pulled in 12 second $=12 \times 5=60 \mathrm{~cm}=0.6 \mathrm{~m}$.

After 12 seconds, let us assume the fly to be at point D .
Length of string out after 12 second is $\mathrm{AD} . \mathrm{AD}=\mathrm{AC}$ - string pulled by Nazima in 12 second $=3.00-0.6=2.4 \mathrm{~m} \operatorname{In} \triangle \mathrm{ADB}$, $\mathrm{AB} 2+\mathrm{BD} 2=\mathrm{AD} 2 \Rightarrow 1.82+\mathrm{BD} 2=2.42 \Rightarrow \mathrm{BD} 2=5.76-3.24=2.52 \Rightarrow \mathrm{BD}=1.587 \mathrm{~m}$ Horizontal distance of fly $=\mathrm{BD}+1.2$
$=1.587+1.2=2.787=2.79 \mathrm{~m}$
Q.3. In the figure, D is a point on hypotenuse $A C$ of $\triangle A B C$, such that $B D \perp A C, D M \perp B C$ and $D N \perp A B$. Prove that : DM2 $=$ DN.MC

Solution:
Let us join DB.

DN $\|$ CB, $\mathrm{DM} \mid \mathrm{AB}$
Therefore, DNBM is a parallelogram.
Since, $\angle \mathrm{B}$ is 90°, therefore, DNBM is a rectangle. Hence, $\mathrm{DN}=\mathrm{MB}, \mathrm{DM}=\mathrm{NB}$ and $\angle \mathrm{CDB}=\angle \mathrm{ADB}=90^{\circ}$ $\angle 2+\angle 3=900 \ldots$ (1) In $\triangle \mathrm{CDM} \angle 1+\angle 2+\angle \mathrm{DMC}=180^{\circ} \angle 1+\angle 2=90^{\circ} \ldots$ (2) In $\triangle \mathrm{DMB} \angle 3+\angle \mathrm{DMB}+\angle 4=180^{\circ}$ $\angle 3+\angle 4=90^{\circ} \ldots$ (3)

From equation (1) and (2)
$\angle 1=\angle 3$
From equation (1) and (3) $\angle 2=\angle 4$ So, $\triangle B D M \sim \triangle D C M B M D M=D M M C \Rightarrow D N D M=D M M C \Rightarrow D M 2=D N$. MC Hence, proved.
Q.4. In the figure, D is a point on hypotenuse AC of $\triangle \mathrm{ABC}$, such that $\mathrm{BD} \perp \mathrm{AC}, \mathrm{DM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{AB}$. Prove that: DN2 $=\mathrm{DM} \cdot \mathrm{AN}$

Solution: Let us join DB.

$\mathrm{DN}|\mid \mathrm{CB}, \mathrm{DM} \| \mathrm{AB}$
Therefore, DNBM is a parallelogram.
Since, $\angle B$ is 90°. Therefore, DNBM is a rectangle. $\mathrm{So}, \mathrm{DN}=\mathrm{MB}, \mathrm{DM}=\mathrm{NB}$ and $\angle \mathrm{CDB}=\angle \mathrm{ADB}=90^{\circ} \angle 4+\angle 5=90 \mathrm{o} \ldots$ (1) In $\triangle \mathrm{ADN} \angle 5+\angle 6=90^{\circ} \ldots$. (2)

From equation (1) and (2)
$\angle 4=\angle 6$
and $\angle \mathrm{DNA}=\angle \mathrm{DNB}=90^{\circ}$ So, $\triangle \mathrm{ADN} \sim \triangle \mathrm{BDN}$ DNBN $=\mathrm{ANDN} \Rightarrow \mathrm{DNDM}=\mathrm{ANDN}(\mathrm{As} \mathrm{BN}=\mathrm{DM}) \Rightarrow \mathrm{DN} 2=\mathrm{DM} \times$ AN Hence, proved.
Q.5. $\quad \mathrm{ABC}$ is a triangle in which $\angle \mathrm{ABC}>90$ o and $\mathrm{AD} \perp \mathrm{CB}$ produced. Prove that $A C 2=A B 2+B C 2+2 B C \cdot B D$.

A

Solution:

In $\triangle \mathrm{ADB}$, applying Pythagoras theorem $\mathrm{AB} 2=\mathrm{AD} 2+\mathrm{DB} 2 \ldots$ (1)

In $\triangle \mathrm{ACD}$, applying Pythagoras theorem
$\mathrm{AC} 2=\mathrm{AD} 2+\mathrm{DC} 2$
$\Rightarrow \mathrm{AC} 2=\mathrm{AD} 2+\mathrm{DB}+\mathrm{BC} 2$
$\Rightarrow A C 2=A D 2+D B 2+B C 2+2 D B \times B C$
Now using equation (1)
$\mathrm{AC} 2=\mathrm{AB} 2+\mathrm{BC} 2+2 \mathrm{BC} . \mathrm{BD}$
Q.6. In the figure given below ABC is a triangle in which $\angle \mathrm{ABC}<90 \mathrm{o}$ and $\mathrm{AD} \perp \mathrm{BC}$. Prove that $\mathrm{AC} 2=\mathrm{AB} 2+\mathrm{BC} 2-2 \mathrm{BC}$. BD .

Solution:

In $\triangle \mathrm{ADB}$, applying Pythagoras theorem we get:
$\mathrm{AD} 2+\mathrm{DB} 2=\mathrm{AB} 2$
$\Rightarrow \mathrm{AD} 2=\mathrm{AB} 2-\mathrm{DB} 2 \ldots$ (1)
In $\triangle \mathrm{ADC}$, applying Pythagoras theorem we get:
$\mathrm{AD} 2+\mathrm{DC} 2=\mathrm{AC} 2 \ldots$...(2)
Now using equation (1), we get:
$\mathrm{AB} 2-\mathrm{BD} 2+\mathrm{DC} 2=\mathrm{AC} 2$
$\Rightarrow \mathrm{AB} 2-\mathrm{BD} 2+\mathrm{BC}-\mathrm{BD} 2=\mathrm{AC} 2$
$\Rightarrow A C 2=A B 2-B D 2+B C 2+B D 2-2 B C . B D$
Hence, $A C 2=A B 2+B C 2-2 B C . B D$.
Q.7. In the figure, $A D$ is a median of a triangle $A B C$ and $A M \perp B C$. Prove that : $\mathrm{AC} 2=\mathrm{AD} 2+\mathrm{BC} \cdot \mathrm{DM}+\mathrm{BC} 22$

Solution:

In $\triangle \mathrm{AMD}$, by using Pythagoras theorem,
$\mathrm{AM} 2+\mathrm{MD} 2=\mathrm{AD} 2 \ldots$ (1) In $\triangle \mathrm{AMC}$ AM2 $+\mathrm{MC} 2=\mathrm{AC} 2 \ldots$ (2) $\Rightarrow \mathrm{AM} 2+\mathrm{MD}+\mathrm{DC} 2=\mathrm{AC} 2$
$\Rightarrow \mathrm{AM} 2+\mathrm{MD} 2+\mathrm{DC} 2+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC} 2$ Using equation (1) we get, $\mathrm{AD} 2+\mathrm{DC} 2+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC} 2$
Now using the result, $\mathrm{DC}=\mathrm{BC} 2$
$\mathrm{AD} 2+\mathrm{BC} 22+2 \mathrm{MD} \cdot \mathrm{BC} 2=\mathrm{AC} 2$
$\Rightarrow \mathrm{AD} 2+\mathrm{BC} 22+\mathrm{MD} \times \mathrm{BC}=\mathrm{AC} 2$ Hence, $\mathrm{AC} 2=\mathrm{AD} 2+\mathrm{BC} \cdot \mathrm{DM}+\mathrm{BC} 22$
Q.8. In the given figure, AD is a median of a triangle ABC and $\mathrm{AM} \perp \mathrm{BC}$. Prove that $\mathrm{AB} 2=\mathrm{AD} 2-\mathrm{BC} \cdot \mathrm{DM}+\mathrm{BC} 22$

Solution:

In $\triangle \mathrm{ABM}$, applying Pythagoras theorem
$\mathrm{AB} 2=\mathrm{AM} 2+\mathrm{MB} 2$
$=\mathrm{AD} 2-\mathrm{DM} 2+\mathrm{MB} 2=\mathrm{AD} 2-\mathrm{DM} 2+\mathrm{BD}-\mathrm{MD} 2 \quad=\mathrm{AD} 2-\mathrm{DM} 2+\mathrm{BD} 2+\mathrm{MD} 2-2 \mathrm{BD} \cdot \mathrm{MD}$
$=\mathrm{AD} 2+\mathrm{BD} 2-2 \mathrm{BD} \cdot \mathrm{MD} \quad=\mathrm{AD} 2+\mathrm{BC} 22-2 \mathrm{BC} 2 \times \mathrm{MD}$
$A B 2=A D 2+B C 22-B C \times M D$ Hence, $A B 2=A D 2-B C \cdot D M+B C 22$
Q.9. In the figure, $A D$ is the median of triangle $A B C$ and $A M \perp B C$. Prove that: $\mathrm{AC} 2+\mathrm{AB} 2=2 \mathrm{AD} 2+12 \mathrm{BC} 2$

Solution:
In $\triangle \mathrm{AMB}$, by Pythagoras theorem,
$\mathrm{AM} 2+\mathrm{MB} 2=\mathrm{AB} 2 \ldots$ (1)
In $\triangle \mathrm{AMC}$
$\mathrm{AM} 2+\mathrm{MC} 2=\mathrm{AC} 2 \ldots$ (2)
Adding equations (1) and (2)
$2 \mathrm{AM} 2+\mathrm{MB} 2+\mathrm{MC} 2=\mathrm{AB} 2+\mathrm{AC} 2$
$\Rightarrow 2 \mathrm{AM} 2+\mathrm{BD}-\mathrm{DM} 2+\mathrm{MD}+\mathrm{DC} 2=\mathrm{AB} 2+\mathrm{AC} 2$
$\Rightarrow 2 \mathrm{AM} 2+\mathrm{BD} 2+\mathrm{DM} 2-2 \mathrm{BD} \cdot \mathrm{DM}+\mathrm{MD} 2+\mathrm{DC} 2+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AB} 2+\mathrm{AC} 2$
$\Rightarrow 2 \mathrm{AM} 2+2 \mathrm{MD} 2+\mathrm{BD} 2+\mathrm{DC} 2+2 \mathrm{MD}-\mathrm{BD}+\mathrm{DC}=\mathrm{AB} 2+\mathrm{AC} 2 \Rightarrow 2 \mathrm{AM} 2+\mathrm{MD} 2+\mathrm{BC} 22+\mathrm{BC} 22+2 \mathrm{MD}-\mathrm{BC} 2+\mathrm{BC} 2=\mathrm{AB} 2+\mathrm{AC} 2$
$\Rightarrow 2 \mathrm{AD} 2+\mathrm{BC} 22=\mathrm{AB} 2+\mathrm{AC} 2$ Hence, $\mathrm{AC} 2+\mathrm{AB} 2=2 \mathrm{AD} 2+12 \mathrm{BC} 2$
Q.10. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Solution:

Let ABCD be a parallelogram
Let us draw perpendicular DE on extended side BA and AF on side DC . In $\triangle \mathrm{DEA} \mathrm{DE} 2+\mathrm{EA} 2=\mathrm{DA} 2 \ldots$ In $\triangle \mathrm{DEB}$ $\mathrm{DE} 2+\mathrm{EB} 2=\mathrm{DB} 2 \Rightarrow \mathrm{DE} 2+\mathrm{EA}+\mathrm{AB} 2=\mathrm{DB} 2 \Rightarrow \mathrm{DE} 2+\mathrm{EA} 2+\mathrm{AB} 2+2 \mathrm{EA} \cdot \mathrm{AB}=\mathrm{DB} 2 \Rightarrow \mathrm{DA} 2+\mathrm{AB} 2+2 \mathrm{EA} \cdot \mathrm{AB}=\mathrm{DB} 2 \ldots$ (ii)

In $\triangle \mathrm{ADF}$
$\mathrm{AD} 2=\mathrm{AF} 2+\mathrm{FD} 2$
In $\triangle \mathrm{AFC} \mathrm{AC} 2=\mathrm{AF} 2+\mathrm{FC} 2=\mathrm{AF} 2+\mathrm{DC}-\mathrm{FD} 2=\mathrm{AF} 2+\mathrm{DC} 2+\mathrm{FD} 2-2 \mathrm{DC} . \mathrm{FD}=\mathrm{AF} 2+\mathrm{FD} 2+\mathrm{DC} 2-2 \mathrm{DC} . \mathrm{FD}$ $\Rightarrow \mathrm{AC} 2=\mathrm{AD} 2+\mathrm{DC} 2-2 \mathrm{DC} . F D \ldots$..(iii)

Since $A B C D$ is a parallelogram
$\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}$
In $\triangle \mathrm{DEA}$ and $\triangle \mathrm{ADF} \angle \mathrm{DEA}=\angle \mathrm{AFD} \angle \mathrm{EAD}=\angle \mathrm{FDAEA}\|\mathrm{DF} \angle \mathrm{EDA}=\angle \mathrm{FADAF}\| \mathrm{ED} \mathrm{AD}$ is common in both triangles. Since, respective angles are same and respective sides are same $\triangle \mathrm{DEA} \cong \triangle \mathrm{AFD}$ So, $\mathrm{EA}=\mathrm{DF}$

Adding equation (ii) and (iii)
$\mathrm{DA} 2+\mathrm{AB} 2+2 \mathrm{EA} . \mathrm{AB}+\mathrm{AD} 2+\mathrm{DC} 2-2 \mathrm{DC} . \mathrm{FD}=\mathrm{DB} 2+\mathrm{AC} 2$
$\Rightarrow \mathrm{DA} 2+\mathrm{AB} 2+\mathrm{AD} 2+\mathrm{DC} 2+2 \mathrm{EA} \cdot \mathrm{AB}-2 \mathrm{DC} \cdot \mathrm{FD}=\mathrm{DB} 2+\mathrm{AC} 2 \Rightarrow \mathrm{BC} 2+\mathrm{AB} 2+\mathrm{AD} 2+\mathrm{DC} 2+2 \mathrm{EA} \cdot \mathrm{AB}-2 \mathrm{AB} \cdot \mathrm{EA}=\mathrm{DB} 2+\mathrm{AC} 2$
$\Rightarrow \mathrm{AB} 2+\mathrm{BC} 2+\mathrm{CD} 2+\mathrm{DA} 2=\mathrm{AC} 2+\mathrm{BD} 2$
Q.11. In Fig. 6.61, two chords AB and CD intersect each other at the point P. Prove that $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$

Solution:

In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$
$\angle \mathrm{A}=\angle \mathrm{D}$ and $\angle \mathrm{C}=\angle \mathrm{B}$ (Angle on same segment)
Therefore, $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$ (AA criteria)
Q.12. In figure two chords $A B$ and $C D$ intersect each other at the point P. Prove that $A P \cdot P B=C P \cdot D P$.

Solution:

In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$
$\angle \mathrm{A}=\angle \mathrm{D}$ and $\angle \mathrm{C}=\angle \mathrm{B}$ (Angle on same segment)
Therefore, $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$ (AA criteria)
We know that corresponding sides of similar triangles are proportional
$\therefore \mathrm{APDP}=\mathrm{PCPB}=\mathrm{CABD}$
$\Rightarrow \mathrm{APDP}=\mathrm{PCPB}$
\therefore AP.PB $=$ PC.DP
Q.13. In the figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$.

Solution:

In $\triangle \mathrm{PAC}$ and $\triangle \mathrm{PDB}$
$\angle \mathrm{APC}=\angle \mathrm{DPB}$ (Common angle) $\angle \mathrm{ACP}=\angle \mathrm{DBP}$ (Exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.) Therefore, $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$ (AA criteria)
Q.14. In the figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that PA.PB=PC.PD

Solution:

In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$
$\angle \mathrm{APC}=\angle \mathrm{DPB}$ (Common angle) $\angle \mathrm{ACP}=\angle \mathrm{DBP}$ (Exterior angles of cyclic quadrilateral)
Therefore, $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$ (AA criteria) We know that corresponding sides of similar triangles are proportional.
$\mathrm{PAPD}=\mathrm{ACDB}=\mathrm{PCPB}$
$\Rightarrow \mathrm{PAPD}=\mathrm{PCPB} \therefore \mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$
Q.15. D is a point on side $B C$ of $\triangle A B C$ such that $B D C D=A B A C$. Prove that $A D$ is the bisector of $\angle B A C$.

Solution:

Construct a line CE parallel to DA which meets BA produced at E.
Therefore, $\angle \mathrm{BAD}=\angle \mathrm{BEC}$ (Corresponding angles).....(1) $\angle \mathrm{DAC}=\angle \mathrm{ACE}$ (Alternate angles)......(2) In $\triangle \mathrm{DBA}$ and $\triangle \mathrm{CBE}$, $\mathrm{BDCD}=\mathrm{ABAC}$ (Given)(3) $\mathrm{BDCD}=\mathrm{BAAE}$ (Basic proportionality theorem)(4) From (3) and (4), $\mathrm{AE}=\mathrm{AC}$ Therefore, $\angle \mathrm{ACE}=\angle \mathrm{BEC} \ldots .$. (5) So, from (1), (2) and (5) $\Rightarrow \angle \mathrm{BAD}=\angle \mathrm{DAC}$ Therefore, AD is angle bisector of $\angle \mathrm{BAC}$.

