CBSE NCERT Solutions for Class 11 mathematics Chapter 11

Miscellaneous exercise on chapter 11

Q.1. If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.

Solution: The origin of the coordinate plane is taken at the vertex of the parabolic reflector in such a way that the axis of the reflector is along the positive x -axis. This can be diagrammatically represented as

The equation of the parabola is of the form $\mathrm{y} 2=4 \mathrm{ax}$ (as it is opening to the right). Since the parabola passes through the point A10,5 $\Rightarrow 102=4 \mathrm{a} 5$
$\Rightarrow 100=20 \mathrm{a}$
$\Rightarrow a=10020=5$
Therefore, the focus of the parabola is $a, 0=5,0$, which is the mid-point of the diameter.
Hence, the focus of the reflector is at the mid-point of the diameter.
Q.2. An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?

Solution: The origin of the coordinate plane is taken at the vertex of the arch in such a way that its vertical axis is along the positive y-axis.
This can be diagrammatically represented as,

The equation of the parabola is of the form $x 2=4 a y$ (as it is opening upwards).
Here the parabola is symmetrical about y-axis and it can be clearly seen that the parabola passes through the point 52, 10.
So, $522=4 \mathrm{a} 10$
$\Rightarrow a=254 \times 4 \times 10=532$
Therefore, the arch is in the form of a parabola whose equation is $\mathrm{x} 2=58 \mathrm{y}$
When $\mathrm{y}=2 \mathrm{~m}, \mathrm{x} 2=58 \times 2$
$\Rightarrow \mathrm{x} 2=54$
$\Rightarrow \mathrm{x}=54 \mathrm{~m} . \therefore \mathrm{AB}=2 \times 54 \mathrm{~m} \approx 2.236 \mathrm{~m}$
So, width is approximately 2.23 m .
Q.3. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a supporting wire attached to the roadway 18 m from the middle.

Solution: Given that: The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a supporting wire attached to the roadway 18 m from the middle.

The vertex is at the lowest point of the cable. The origin of the coordinate plane is taken as the vertex of the parabola, while its vertical axis is taken along the positive y-axis. This can be diagrammatically represented as

Here, AB and OC are the longest and the shortest wires respectively, attached to the cable.
DF is the supporting wire attached to the roadway, 18 m from the middle.
Here, $\mathrm{AB}=30 \mathrm{~m}, \mathrm{OC}=6 \mathrm{~m}$, and $\mathrm{BC}=1002=50 \mathrm{~m}$.
The equation of the parabola is of the form $\mathrm{x} 2=4 \mathrm{ay}$ (as it is opening upwards)
The coordinates of point A are 50, 30-6=50, 24
Since A50, 24 ia a point on the parabola,
$502=4 \cdot a \cdot 24 \Rightarrow a=50 \times 504 \times 24=62524$
\therefore Equation of the parabola $\mathrm{x} 2=4 \times 62524 \times y \Rightarrow 6 \times 2=625 \mathrm{y}$
The x -coordinate of point D is 18
Hence, at $\mathrm{x}=18$,
$6182=625 y \Rightarrow y=6 \times 18 \times 18625 \Rightarrow y \approx 3.11$
$\therefore \mathrm{DE}=3.11 \mathrm{~m}$
$\mathrm{DF}=\mathrm{DE}+\mathrm{EF}=3.11 \mathrm{~m}+6 \mathrm{~m}=9.11 \mathrm{~m}$
Thus, the length of the supporting wire attached to the roadway 18 m from the middle is approximately 9.11 m
Q.4. An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.

Solution: Given that: An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.

Since the height and width of the arc from the centre is 2 m and 8 m respectively, it is clear that the length of the major axis is 8 m , while the length of the semi-minor axis is 2 m .
The origin of the coordinate plane is taken as the centre of the ellipse, while the major axis is taken along the x -axis. Hence, the semi-ellipse can be diagrammatically represented as,

The equation of the semi-ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1, \mathrm{y} \geq 0$ where a is the semi-major axis.
Accordingly, $2 \mathrm{a}=8 \Rightarrow \mathrm{a}=4 \mathrm{andb}=2$.
Therefore, the equation of the semi-ellipse is $\mathrm{x} 216+\mathrm{y} 24=1, \mathrm{y} \geq 0 \ldots$ (i)
Let A be a point on the major axis such that $\mathrm{AB}=1.5 \mathrm{~m}$.
Draw AC perpendicular to OB.
Here, $\mathrm{OA}=4-1.5 \mathrm{~m}=2.5 \mathrm{~m}$
The x -coordinate of point C is 2.5 .
On substituting the value of $\mathrm{x}=2.5$ in equation (i), we obtain
$2.5216+\mathrm{y} 24=1 \Rightarrow 6.2516+\mathrm{y} 24=1$
$\Rightarrow \mathrm{y} 2=41-6.2516 \Rightarrow \mathrm{y} 2=49.7516$
$\Rightarrow \mathrm{y} 2=2.4375 \Rightarrow \mathrm{y} \approx 1.56$
$\therefore \mathrm{AC}=1.56 \mathrm{~m}$
Thus, the height of the arch at a point 1.5 m from one end is approximately 1.56 m .
Q.5. A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x -axis.

Solution: Given that: A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x -axis.

Let AB be the rod making an angle θ with OX and Px, y be the point on it such that $\mathrm{AP}=3 \mathrm{~cm}$.
Then, $\mathrm{PB}=\mathrm{AB}-\mathrm{AP}=12-3 \mathrm{~cm}=9 \mathrm{~cm}(\mathrm{As} \mathrm{AB}=12 \mathrm{~cm})$
From P, draw $P Q \perp O Y$ and $P R \perp O X$.

In $\triangle \mathrm{PBQ}, \cos \theta=\mathrm{PQ} P \mathrm{~B}=\mathrm{x} 9$
In \triangle PRA, $\sin \theta=$ PRPA $=y 3$
Since, $\sin 2 \theta+\cos 2 \theta=1$
$\mathrm{y} 32+\mathrm{x} 92=1$
or, $\mathrm{x} 281+\mathrm{y} 29=1$
Thus, the equation of the locus of point P on the rod is $\mathrm{x} 281+\mathrm{y} 29=1$
Q.6. Find the area of the triangle formed by the lines joining the vertex of the parabola $\mathrm{x} 2=12 \mathrm{y}$ to trends of its latus rectum.

Mathematics Textbook for Class 11
Solution: \quad The given parabola is $\mathrm{x} 2=12 \mathrm{y}$
To find: the area of the triangle formed by joining the vertex and the trends of the latus rectum of the parabola.
On comparing this equation with $\mathrm{x} 2=4 \mathrm{ay}$, we obtain $4 \mathrm{a}=12 \Rightarrow \mathrm{a}=3$
\therefore The coordinates of foci are $\mathrm{S} 0, \mathrm{a}=\mathrm{S} 0,3$
Let AB be the latus rectum of the given parabola.
The given parabola can be roughly drawn as

At $\mathrm{y}=3, \mathrm{x} 2=123 \Rightarrow \mathrm{x} 2=36 \Rightarrow \mathrm{x}= \pm 6$
\therefore The coordinates of A are -6,3, while the coordinates of B are 6,3
Therefore, the vertices of $\triangle \mathrm{OAB}$ are $\mathrm{O} 0,0, \mathrm{~A}-6,3$ and B6,3
Area of $\triangle \mathrm{OAB}=1203-3+-63-0+60-3$ unit2
$=12-63+6-3$ unit 2
$=12-18$ - 18 unit 2
$=12 \times 36$ unit 2
$=18$ unit 2
Thus, the required area of the triangle is 18 unit2
Q.7. A man running a racecourse notice that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m . Find the equation of the path traced by the man.

Solution: Given that: A man running a racecourse notice that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m . Find the equation of the posts traced by the man.

Let A and B be the positions of the two flag posts and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the position of the man.
Accordingly, $\mathrm{PA}+\mathrm{PB}=10 \mathrm{We}$ know that if distances from two fixed points is constant, then the path is an ellipse and this constant will be the length of the major axis of the ellipses. Therefore, the path described by the man is an ellipse where the length of the major axis is 10 m , while points A and B are the foci. Taking the origin of the coordinate plane as the centre of the ellipse, while taking the major axis along the x -axis, the ellipse can be diagrammatically represented as

The equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis.
Accordingly, $2 \mathrm{a}=10 \Rightarrow \mathrm{a}=5$
Distance between the foci $(2 \mathrm{c})=8 \Rightarrow \mathrm{c}=4$ On using the relation $\mathrm{c}=\mathrm{a} 2-\mathrm{b} 2$, we obtain $4=25-\mathrm{b} 2 \Rightarrow 16=25-\mathrm{b} 2$ $\Rightarrow b 2=25-16=9 \Rightarrow b=3$ Thus, the equation of the path traced by the man is $x 225+y 29=1$
Q.8. An equilateral triangle is inscribed in the parabola $y 2=4 a x$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

Solution: Given that: An equilateral triangle is inscribed in the parabola y2=4ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

Let OAB be the equilateral triangle inscribed in the parabola.
Let AB intersect the x -axis at point C .

Let $\mathrm{OC}=\mathrm{k}$, then the coordinates of point C are $(\mathrm{k}, 0)$.
So, from the equation of the given parabola, we have $\mathrm{y} 2=4 \mathrm{ak} \Rightarrow \mathrm{y}= \pm 2 \mathrm{ak}$
\therefore The respective coordinates of points A and B are k, 2ak and k, -2 ak
$\mathrm{AB}=\mathrm{CA}+\mathrm{CB}=2 \mathrm{ak}+2 \mathrm{ak}=4 \mathrm{ak}$
Since OAB is an equilateral triangle, $\mathrm{OA}=\mathrm{OB} \Rightarrow \mathrm{OA} 2=\mathrm{AB} 2$.
Using distance formula we get,
$\therefore(\mathrm{k}-0) 2+2 \mathrm{ak}-02=4 \mathrm{ak} 2$
$\Rightarrow \mathrm{k} 2+2 \mathrm{ak} 2=4 \mathrm{ak} 2$
$\Rightarrow \mathrm{k} 2+4 \mathrm{ak}=16 \mathrm{ak}$
$\Rightarrow \mathrm{k} 2=12 \mathrm{ak}$
$\Rightarrow \mathrm{k}=12 \mathrm{a}$
$\therefore \mathrm{AB}=4 \mathrm{ak}=4 \mathrm{a} \times 12 \mathrm{a}=412 \mathrm{a} 2=83 \mathrm{a}$
Thus, the side of the equilateral triangle inscribed in parabola $\mathrm{y} 2=4 \mathrm{ax}$ is 83 a .

Exercise 11.1

Q.1. Find the equation of the circle with centre 0,2 and radius 2 .

Solution: We know that, the equation of a circle is given as $x-h 2+y-k 2=r 2$ where h, k is the centre of the circle and r is the radius of the circle.
Given: centre $\mathrm{h}, \mathrm{k}=0,2$ and radius $\mathrm{r}=2$
Therefore, the equation of the given circle can be written as
$\mathrm{x}-02+\mathrm{y}-22=22$
$\Rightarrow \mathrm{x} 2+\mathrm{y} 2+4-4 \mathrm{y}=4$
$\therefore \mathrm{x} 2+\mathrm{y} 2-4 \mathrm{y}=0$
Q.2. Find the equation of the circle passing through the points 4,1 and 6,5 and whose centre is on the line $4 x+y=16$.

Solution: Let the equation of the required circle be $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$.
Since the circle passes through points 4,1 and 6,5 , the respective values of x and y will satisfy the equation.
Therefore, $4-\mathrm{h} 2+1-\mathrm{k} 2=\mathrm{r} 2 \ldots$... ${ }^{\text {(i) }}$
$6-\mathrm{h} 2+5-\mathrm{k} 2=\mathrm{r} 2 \ldots$ (ii)
Since the centre h, k of the circle lies on line $4 x+y=16$, the values of x and y will satisfy the equation.
$4 \mathrm{~h}+\mathrm{k}=16 \ldots$..(iii)
From equations (i) and (ii), we get
$4-\mathrm{h} 2+1-\mathrm{k} 2=6-\mathrm{h} 2+5-\mathrm{k} 2$
$\Rightarrow 16-8 \mathrm{~h}+\mathrm{h} 2+1-2 \mathrm{k}+\mathrm{k} 2=36-12 \mathrm{~h}+\mathrm{h} 2+25-10 \mathrm{k}+\mathrm{k} 2$
$\Rightarrow 16-8 \mathrm{~h}+1-2 \mathrm{k}=36-12 \mathrm{~h}+25-10 \mathrm{k}$
$\Rightarrow 4 \mathrm{~h}+8 \mathrm{k}=44$
$\Rightarrow \mathrm{h}+2 \mathrm{k}=11 \ldots$ (iv)
On solving equations (iii) and (iv), we get $\mathrm{h}=3$ and $\mathrm{k}=4$.
On substituting the values of h and k in equation (i), we get
$4-32+1-42=\mathrm{r} 2$
$\Rightarrow 12+-32=\mathrm{r} 2$
$\Rightarrow 1+9=\mathrm{r} 2$
$\Rightarrow \mathrm{r} 2=10$
$\Rightarrow \mathrm{r}=10$
Thus, the equation of the required circle is
$\mathrm{x}-32+\mathrm{y}-42=102$
$\Rightarrow \mathrm{x} 2-6 \mathrm{x}+9+\mathrm{y} 2-8 \mathrm{y}+16=10$
$\therefore \mathrm{x} 2+\mathrm{y} 2-6 \mathrm{x}-8 \mathrm{y}+15=0$
Q.3. Find the equation of the circle passing through the points 2,3 and $-1,1$ and whose centre is on the line $x-3 y-11=0$.

Solution: Let the equation of the required circle be $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$.
Since the circle passes through points 2,3 and $-1,1$, the points will satisfy the equation of the circle.
Therefore, $2-\mathrm{h} 2+3-\mathrm{k} 2=\mathrm{r} 2 \ldots$ (i)
$-1-\mathrm{h} 2+1-\mathrm{k} 2=\mathrm{r} 2 \ldots$...ii)
Since the centre h, k of the circle lies on line $x-3 y-11=0$, the point will satisfy the equation of the line.
Therefore, $\mathrm{h}-3 \mathrm{k}=11$...(iii)
From equations (i) and (ii), we get
$2-\mathrm{h} 2+3-\mathrm{k} 2=-1-\mathrm{h} 2+1-\mathrm{k} 2$
$\Rightarrow 4-4 \mathrm{~h}+\mathrm{h} 2+9-6 \mathrm{k}+\mathrm{k} 2=1+2 \mathrm{~h}+\mathrm{h} 2+1-2 \mathrm{k}+\mathrm{k} 2$
$\Rightarrow 4-4 \mathrm{~h}+9-6 \mathrm{k}=1+2 \mathrm{~h}+1-2 \mathrm{k}$
$\Rightarrow 6 \mathrm{~h}+4 \mathrm{k}=11$...(iv)
On solving equations (iii) and (iv), we get $\mathrm{h}=72$ and $\mathrm{k}=-52$.
On substituting the values of h and k in equation (i), we obtain
$2-722+3+522=\mathrm{r} 2$
$\Rightarrow 4-722+6+522=\mathrm{r} 2$
$\Rightarrow-322+1122=\mathrm{r} 2$
$\Rightarrow 94+1214=\mathrm{r} 2$
$\Rightarrow 1304=\mathrm{r} 2$
Thus, the equation of the required circle is
$\mathrm{x}-722+\mathrm{y}+522=1304$
$\Rightarrow 2 \mathrm{x}-722+2 \mathrm{y}+522=1304$
$\Rightarrow 4 \mathrm{x} 2-28 \mathrm{x}+49+4 \mathrm{y} 2+20 \mathrm{y}+25=130$
$\Rightarrow 4 \mathrm{x} 2+4 \mathrm{y} 2-28 \mathrm{x}+20 \mathrm{y}-56=0$
$\Rightarrow 4 \mathrm{x} 2+\mathrm{y} 2-7 \mathrm{x}+5 \mathrm{y}-14=0$
$\therefore \mathrm{x} 2+\mathrm{y} 2-7 \mathrm{x}+5 \mathrm{y}-14=0$

EMBIBE
Q.4. Find the equation of the circle with radius 5 , whose centre lies on x -axis and passes through the point $(2,3)$.

Solution: We know that equation of circle is
$(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2$

Centre of circle is denoted by h, k. Since it lies on x -axis, $\mathrm{k}=0$. Hence, Centre of circle $=(\mathrm{h}, 0)$ and given radius $=5$ Now, Distance between centre and point on circle $=$ radius So, Distance between points $(\mathrm{h}, 0)$ and $(2,3)=5$ We know that the distance between $\mathrm{x} 1, \mathrm{y} 1$ and $\mathrm{x} 2, \mathrm{y} 2=\mathrm{x} 2-\mathrm{x} 12+\mathrm{y} 2-\mathrm{y} 12$ Therefore, $(2-\mathrm{h}) 2+(3-0) 2=5$ or $(2) 2+(\mathrm{h}) 2-2(2) \mathrm{h}+9=5 \Rightarrow 13+\mathrm{h} 2-4 \mathrm{~h}=5$ Squaring both sides we get, $(13+\mathrm{h} 2-4 \mathrm{~h}) 2=52 \Rightarrow 13+\mathrm{h} 2-4 \mathrm{~h}=25$ or $\mathrm{h} 2-4 \mathrm{~h}-12=0 \Rightarrow \mathrm{~h} 2-6 \mathrm{~h}+2 \mathrm{~h}-12=0$ or $\mathrm{h}(\mathrm{h}-6)+2(\mathrm{~h}-6)=0 \Rightarrow(\mathrm{~h}+2)(\mathrm{h}-6)=0$ So, $\mathrm{h}=-2$ or $\mathrm{h}=6$

When $\mathrm{h}=-2$

Equation of circle is:
$(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2 \Rightarrow \mathrm{x}-(-2) 2+(\mathrm{y}-0) 2=52$ or $(\mathrm{x}+2) 2+\mathrm{y} 2=25 \Rightarrow(\mathrm{x}) 2+(2) 2+2(\mathrm{x})(2)+\mathrm{y} 2=25$ or $\mathrm{x} 2+\mathrm{y} 2+4 \mathrm{x}-21=0$
When $\mathrm{h}=6$ Equation of circle is: $(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2 \Rightarrow(\mathrm{x}-6) 2+(\mathrm{y}-0) 2=52$
or $\mathrm{x} 2+(6) 2-2(\mathrm{x})(6)+\mathrm{y} 2=25 \Rightarrow \mathrm{x} 2+\mathrm{y} 2-12 \mathrm{x}+36-25=0$ or $\mathrm{x} 2+\mathrm{y} 2-12 \mathrm{x}+11=0$ Hence, the required equation of a circle is $\mathrm{x} 2+\mathrm{y} 2+4 \mathrm{x}-21=0$ or $\mathrm{x} 2+\mathrm{y} 2-12 \mathrm{x}+11=0$
Q.5. Find the equation of the circle passing through 0,0 and making intercepts a and b on the coordinate axes.

Solution: Let the equation of the required circle be $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$.
Since the centre of the circle passes through $(0,0)$, the point will satisfy the equation.
$0-\mathrm{h} 2+0-\mathrm{k} 2=\mathrm{r} 2$
$\Rightarrow \mathrm{h} 2+\mathrm{k} 2=\mathrm{r} 2$
The equation of the circle now becomes $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{h} 2+\mathrm{k} 2$.
It is given that the circle makes intercepts a and b on the coordinate axes. This means that the circle passes
through points $\mathrm{a}, 0$ and $0, \mathrm{~b}$.
Therefore, $\mathrm{a}-\mathrm{h} 2+0-\mathrm{k} 2=\mathrm{h} 2+\mathrm{k} 2 \ldots$ (i)
$0-\mathrm{h} 2+\mathrm{b}-\mathrm{k} 2=\mathrm{h} 2+\mathrm{k} 2 \ldots$ (ii)
From equation (i), we obtain $\mathrm{a} 2-2 \mathrm{ah}+\mathrm{h} 2+\mathrm{k} 2=\mathrm{h} 2+\mathrm{k} 2$
$\Rightarrow \mathrm{a} 2-2 \mathrm{ah}=0$
$\Rightarrow \mathrm{aa}-2 \mathrm{~h}=0$
$\Rightarrow \mathrm{a}=0$ or $\mathrm{a}-2 \mathrm{~h}=0$
However, $\mathrm{a} \neq 0$; hence, $\mathrm{a}-2 \mathrm{~h}=0 \Rightarrow \mathrm{~h}=\mathrm{a} 2$
From equation (ii), we obtain $\mathrm{h} 2+\mathrm{b} 2-2 \mathrm{bk}+\mathrm{k} 2=\mathrm{h} 2+\mathrm{k} 2$
$\Rightarrow \mathrm{b} 2-2 \mathrm{bk}=0$
$\Rightarrow \mathrm{bb}-2 \mathrm{k}=0$
$\Rightarrow \mathrm{b}=0$ or $\mathrm{b}-2 \mathrm{k}=0$
However, $\mathrm{b} \neq 0$; hence, $\mathrm{b}-2 \mathrm{k}=0 \Rightarrow \mathrm{k}=\mathrm{b} 2$.
Thus, the equation of the required circle is
$\mathrm{x}-\mathrm{a} 22+\mathrm{y}-\mathrm{b} 22=\mathrm{a} 22+\mathrm{b} 22$
$\Rightarrow 2 \mathrm{x}-\mathrm{a} 22+2 \mathrm{y}-\mathrm{b} 22=\mathrm{a} 2+\mathrm{b} 24$
$\Rightarrow 4 \mathrm{x} 2-4 \mathrm{ax}+\mathrm{a} 2+4 \mathrm{y} 2-4 \mathrm{by}+\mathrm{b} 2=\mathrm{a} 2+\mathrm{b} 2$
$\Rightarrow 4 \mathrm{x} 2+4 \mathrm{y} 2-4 \mathrm{ax}-4 \mathrm{by}=0$
$\Rightarrow \mathrm{x} 2+\mathrm{y} 2-\mathrm{ax}-\mathrm{by}=0$
Q.6. Find the equation of a circle with centre 2,2 and passes through the point 4,5 .

Solution: \quad The centre of the circle is given as $\mathrm{h}, \mathrm{k}=2,2$.
Since the circle passes through point 4,5, the radius r of the circle is the distance between the points 2,2 and 4,5.
$\therefore \mathrm{r}=2-42+2-52=-22+-32=4+9=13$
\because Distance between (a, b) and (x, y) is $(\mathrm{x}-\mathrm{a}) 2+(\mathrm{y}-\mathrm{b}) 2$
Thus, the equation of the circle is
$\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$
$\Rightarrow \mathrm{x}-22+\mathrm{y}-22=132$
$\Rightarrow \mathrm{x} 2-4 \mathrm{x}+4+\mathrm{y} 2-4 \mathrm{y}+4=13$
$\therefore \mathrm{x} 2+\mathrm{y} 2-4 \mathrm{x}-4 \mathrm{y}-5=0$
Q.7. Does the point $-2.5,3.5$ lie inside, outside or on the circle $\mathrm{x} 2+\mathrm{y} 2=25$?

Solution: The equation of the given circle is $\mathrm{x} 2+\mathrm{y} 2=25$.
$\mathrm{x} 2+\mathrm{y} 2=25$
$\Rightarrow \mathrm{x}-02+\mathrm{y}-02=55$,
which is of the form $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$, where $\mathrm{h}=0, \mathrm{k}=0$ and $\mathrm{r}=5$.
\therefore Centre $=0,0$ and radius $=5$
Now, the distance between point $-2.5,3.5$ and centre 0,0 .
$=-2.5-02+3.5-02$
\because Distance between (a, b) and (x, y) is $(\mathrm{x}-\mathrm{a}) 2+(\mathrm{y}-\mathrm{b}) 2$
$=6.25+12.25$
$=18.5$
$\approx 4.3<5$
Since the distance between point $-2.5,3.5$ and centre 0,0 of the circle is less than the radius of the circle, point $-2.5,3.5$ is lies inside the circle.
Q.8. Find the equation of the circle with centre $-2,3$ and radius 4 .

Solution: The equation of a circle is given as
$\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$
Where (h, k) is the centre of the circle and r is the radius of the circle.
Given: centre $h, k=-2,3$ and radius $r=4$. Therefore, the equation of the circle is $x+22+y-32=42$
$\Rightarrow \mathrm{x} 2+4 \mathrm{x}+4+\mathrm{y} 2-6 \mathrm{y}+9=16$
$\therefore \mathrm{x} 2+\mathrm{y} 2+4 \mathrm{x}-6 \mathrm{y}-3=0$
Q.9. Find the equation of the circle with centre 12,14 and radius 112 .

Solution: The equation of a circle with centre h, k and radius r is given as $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$
Where, (h, k) is the centre of the circle and r is the radius of the circle.
Given that: Centre $\mathrm{h}, \mathrm{k}=12,14$ and radius $\mathrm{r}=112$
Now, the equation of the circle can be written as
$\mathrm{x}-122+\mathrm{y}-142=1122$
$\mathrm{x} 2-\mathrm{x}+14+\mathrm{y} 2-\mathrm{y} 2+116=1144$
$\mathrm{x} 2-\mathrm{x}+14+\mathrm{y} 2-\mathrm{y} 2+116-1144=0$
$144 \times 2-144 x+36+144 y 2-72 y+9-1=0$
$144 x 2-144 x+144 y 2-72 y+44=036 x 2-36 x+36 y 2-18 y+11=036 x 2+36 y 2-36 x-18 y+11=0$
Q.10. Find the equation of the circle with centre 1,1 and radius 2 .

Solution: The equation of a circle with centre h, k and radius r is given as $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$

Where, (h, k) is the centre of the circle and r is the radius of the circle.
Given that: Centre $\mathrm{h}, \mathrm{k}=1,1$ and radius $\mathrm{r}=2$.
Now, the equation of the circle can be written as
$\mathrm{x}-12+\mathrm{y}-12=22$
$\mathrm{x} 2-2 \mathrm{x}+1+\mathrm{y} 2-2 \mathrm{y}+1=2$
$\mathrm{x} 2+\mathrm{y} 2-2 \mathrm{x}-2 \mathrm{y}=0$
Q.11. Find the equation of the circle with centre $-\mathrm{a},-\mathrm{b}$ and radius $\mathrm{a} 2-\mathrm{b} 2$.

Solution: We know that, the equation of a circle is given as $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$ where h, k is the centre of the circle and r is the radius of the circle.

Given that: Centre $\mathrm{h}, \mathrm{k}=-\mathrm{a},-\mathrm{b}$ and radius $\mathrm{r}=\mathrm{a} 2-\mathrm{b} 2$.
Therefore, the equation of the circle is
$\mathrm{x}+\mathrm{a} 2+\mathrm{y}+\mathrm{b} 2=\mathrm{a} 2-\mathrm{b} 22$
$\mathrm{x} 2+2 \mathrm{ax}+\mathrm{a} 2+\mathrm{y} 2+2 \mathrm{by}+\mathrm{b} 2=\mathrm{a} 2-\mathrm{b} 2$
$x 2+y 2+2 a x+2 b y+2 b 2=0$
Q.12. Find the centre and radius of the circle $\mathrm{x}+52+\mathrm{y}-32=36$.

Solution: We know that, the equation of a circle is given as $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$ where h, k is the centre of the circle and r is the radius of the circle.

The equation of the given circle is $\mathrm{x}+52+\mathrm{y}-32=36$.
We can write $\mathrm{x}+52+\mathrm{y}-32=36$ as,
$\Rightarrow \mathrm{x}-52+\mathrm{y}-32=62$,
which is of the form $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$,
Here $\mathrm{h}=-5, \mathrm{k}=3$ and $\mathrm{r}=6$.
Thus, the centre of the given circle is $-5,3$, while its radius is 6 .
Q.13. Find the centre and radius of the circle $\mathrm{x} 2+\mathrm{y} 2-4 \mathrm{x}-8 \mathrm{y}-45=0$

Solution: We know that, the equation of a circle is given as $x-h 2+y-k 2=r 2$ where h, k is the centre of the circle and r is the radius of the circle.

The equation of the given circle is $x 2+y 2-4 x-8 y-45=0$.
It can also be written as $\mathrm{x} 2-4 \mathrm{x}+\mathrm{y} 2-8 \mathrm{y}=45$
Using completing the square method we get,
$\mathrm{x} 2-2 \mathrm{x} 2+22+\mathrm{y} 2-2 \mathrm{y} 4+42-4-16=45$
$\Rightarrow \mathrm{x}-22+\mathrm{y}-42=65$
$\Rightarrow \mathrm{x}-22+\mathrm{y}-42=652$,
which is of the form $\mathrm{x}-\mathrm{h} 2+\mathrm{y}-\mathrm{k} 2=\mathrm{r} 2$, where $\mathrm{h}=2, \mathrm{k}=4$ and $\mathrm{r}=65$,
Thus, the centre of the given circle is 2,4 , while its radius is 65 .
Q.14. Find the centre and radius of the circle $\mathrm{x} 2+\mathrm{y} 2-8 \mathrm{x}+10 \mathrm{y}-12=0$

Solution: The equation of the given circle is $x 2+y 2-8 x+10 y-12=0$
$x 2+y 2-8 x+10 y-12=0$
$\Rightarrow \mathrm{x} 2-8 \mathrm{x}+\mathrm{y} 2+10 \mathrm{y}=12 \Rightarrow \mathrm{x} 2-2(\mathrm{x})(4)+42+\mathrm{y} 2+2(\mathrm{y})(5)+52-16-25=12 \Rightarrow(\mathrm{x}-4) 2+(\mathrm{y}+5) 2=53$
$\Rightarrow(\mathrm{x}-4) 2+\{\mathrm{y}-(-5)\} 2=(53) 2$, which is of the form $(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2$, where $\mathrm{h}=4, \mathrm{k}=-5$, and $\mathrm{r}=53$ Thus, the centre of the given circle is $(4,-5)$, while its radius is 53
Q.15. Find the centre and radius of the circle $2 \mathrm{x} 2+2 \mathrm{y} 2-\mathrm{x}=0$

Solution: The equation of the given circle is $2 \mathrm{x} 2+2 \mathrm{y} 2-\mathrm{x}=0$.
General for of the equation of a circle of radius r and center (h, k) is given by,
$(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2$ So to know the center and radius of the circle, we need to convert the given equation to the standard form. Therefore, $2 \mathrm{x} 2+2 \mathrm{y} 2-\mathrm{x}=0$
$\Rightarrow 2 \mathrm{x} 2-\mathrm{x}+2 \mathrm{y} 2=0$
$\Rightarrow 2 \times 2-\mathrm{x} 2+\mathrm{y} 2=0$
$\Rightarrow \mathrm{x} 2-2 \times 14+142+\mathrm{y} 2-142=0$
$\Rightarrow \mathrm{x}-142+(\mathrm{y}-0) 2=142$
Comparing the above equation with standard form we get, $\mathrm{h}=14, \mathrm{k}=0$ and $\mathrm{r}=14$. Thus, the centre of the given circle is 14,0 , while its radius is 14 .

Exercise 11.2

Q.1. Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $\mathrm{y} 2=12 \mathrm{x}$

Solution:
The given equation is $\mathrm{y} 2=12 \mathrm{x}$
Here, the coefficient of x is positive. Hence, the parabola opens towards the right.
On comparing this equation with $\mathrm{y} 2=4 \mathrm{ax}$, we obtain
$4 \mathrm{a}=12 \Rightarrow \mathrm{a}=3 \therefore$ Coordinates of the focus $=(\mathrm{a}, 0)=(3,0)$ Since the given equation involves y 2 , the axis of the
parabola is the x-axis. Equation of directrix, $x=-a$ i.e. $x=-3$ or $x+3=0$ Length of latus rectum $=4 a=4 \times 3=12$
Q.2. Find the equation of the parabola that satisfies the given conditions: Vertex 0,0 focus $-2,0$

Solution: \quad Vertex 0,0 focus $-2,0$

Since the vertex of the parabola is 0,0 and the focus lies on the negative x -axis, x -axis is the axis of the parabola, while the equation of the parabola is of the form $\mathrm{y} 2=-4 \mathrm{ax}$.

Since the focus is $-2,0=(-a, 0) \Rightarrow a=2$ Thus, the equation of the parabola is $\mathrm{y} 2=-4 \times 2 \mathrm{x}$ i.e. $\mathrm{y} 2=-8 \mathrm{x}$
Q.3. Find the equation of the parabola that satisfies the given conditions: Vertex 0,0 passing through 2,3 and axis is along x axis.

Solution: Since the vertex is 0,0 and the axis of the parabola is the x-axis, the equation of the parabola is either of the form $y 2=4 a x$ or $y 2=-4 a x$.
The parabola passes through point 2,3 , which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $\mathrm{y} 2=4 \mathrm{ax}$, while point 2,3 must satisfy the equation $\mathrm{y} 2=4 \mathrm{ax} . \therefore 32=4 \mathrm{a} 2 \Rightarrow \mathrm{a}=98$ Thus, the equation of the parabola is $\mathrm{y} 2=498 \mathrm{x}$
$\mathrm{y} 2=92 \mathrm{x}$
$2 y 2=9 x$ Therefore, the equation of the parabola is $2 y 2=9 x$.
Q.4. Find the equation of the parabola that satisfies the given conditions: Vertex 0,0 , passing through 5,2 and symmetric with respect to y-axis
Solution: Since the vertex is 0,0 and the parabola is symmetric about the y-axis, the equation of the parabola is either of the form $\times 2=4 a y$ or $\times 2=-4 a y$.

The parabola passes through point 5,2 which lies in the first quadrant.
Therefore, the equation of the parabola is of the form $x 2=4 a y$, while point 5,2 must satisfy the equation $x 2=4 a y . \therefore 52=4 \times a \times 2 \Rightarrow 25=8 a \Rightarrow a=258$ Thus, the equation of the parabola is $\mathrm{x} 2=4258 \mathrm{y}$
$2 \times 2=25 y$ Therefore, the equation of the parabola is $2 \times 2=25 y$.
Q.5. Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $\mathrm{x} 2=6 \mathrm{y}$

Solution: The given equation is $x 2=6 y$
Here, the coefficient of y is positive.
Hence, the parabola opens upwards. On comparing this equation with $\mathrm{x} 2=4 \mathrm{ay}$, we obtain $4 \mathrm{a}=6 \Rightarrow \mathrm{a}=32 \therefore$
Coordinates of the focus $=(0, a)=0,32$ Since the given equation involves $x 2$, the axis of the parabola is the y axis. Equation of directrix, $y=-a$ i.e. $y=-32$ Length of latus rectum $=4 a=6$
Q.6. Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y 2=-8 x$

Solution: The given equation is $\mathrm{y} 2=-8 \mathrm{x}$.
Here, the coefficient of x is negative. Hence, the parabola open towards the left.
On comparing this equation with $\mathrm{y} 2=-4 \mathrm{ax}$ we obtain
$-4 \mathrm{a}=-8 \Rightarrow \mathrm{a}=2 \therefore$ Coordinates of the focus $=-\mathrm{a}, 0=-2,0$ Since the given equation involves y 2 , the axis of the parabola is the x-axis. Equation of directrix, $x=a$ i.e., $x=2$ Length of latus rectum $=4 a=8$
Q.7. Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for x2=-16y

Solution: The given equation is $x 2=-16 y$.
Here, the coefficient of y is negative. Hence, the parabola opens downwards.
On comparing this equation with $\times 2=-4 a y$, we obtain,
$-4 a=-16 \Rightarrow a=4 \therefore$ Coordinates of the focus $=0,-a=0,-4$ Since the given equation involves x 2 , the axis of the parabola is the y-axis. Equation of directrix, $y=a$ i.e. $y=4$ Length of latus rectum $=4 a=16$
Q.8. Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $\mathrm{y} 2=10 \mathrm{x}$

Solution: The given equation is $\mathrm{y} 2=10 \mathrm{x}$.
Here, the coefficient of x is positive.
Hence, the parabola opens towards the right. On comparing this equation with $\mathrm{y} 2=4 \mathrm{ax}$, we obtain, $4 \mathrm{a}=10 \Rightarrow \mathrm{a}=52 \therefore$ Coordinates of the focus $=\mathrm{a}, 0=52,0$ Since the given equation involves y 2 ,the axis of the parabola is the x-axis. Equation of directrix, $x=-a$ i.e. $x=-52$ Length of latus rectum $=4 a=10$
Q.9. Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x 2=-9 y$

Solution: The given equation is $\mathrm{x} 2=-9 \mathrm{y}$.
Here, the coefficient of y is negative. Hence, the parabola opens downwards.
On comparing this equation with $\mathrm{x} 2=-4 a y$, we obtain
$-4 a=-9 \Rightarrow a=94$
\therefore Coordinates of the focus $=0,-a=0,-94$
Since the given equation involves x 2 , the axis of the parabola is the y -axis.
Equation of directrix, $y=a$ i.e. $y=94$
Length of latus rectum $=4 a=9$
Q.10. Find the equation of the parabola that satisfies the given conditions: Focus 6,0 ; directrix $x=-6$

Solution: \quad Focus 6, 0 ; directrix, $x=-6$
Since the focus lies on the x -axis, the x -axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $\mathrm{y} 2=4 \mathrm{ax}$ or $\mathrm{y} 2=-4 \mathrm{ax}$. It is also seen that the directrix, $x=-6$ is to the left of the y-axis, while the focus 6,0 is to the right of the y-axis. Hence, the parabola is of the form $\mathrm{y} 2=4 \mathrm{ax}$. Here, $\mathrm{a}=6$ Thus, the equation of the parabola is $\mathrm{y} 2=24 \mathrm{x}$.
Q.11. Find the equation of the parabola that satisfies the given conditions: Focus $0,-3$; directrix $\mathrm{y}=3$

Solution: \quad Focus $=0,-3$; directrix $y=3$
Since the focus lies on the y-axis, the y-axis is the axis of the parabola.
Therefore, the equation of the parabola is either of the form $x 2=4 a y$ or $\times 2=-4 a y$. It is also seen that the directrix, $y=3$ is above the x-axis, while the focus $0,-3$ is below the x-axis. Hence, the equation of the parabola is of the form $\mathrm{x} 2=-4 a y$. Here, $\mathrm{a}=3$ Thus, the equation of the parabola is $\mathrm{x} 2=-12 \mathrm{y}$.
Q.12. Find the equation of the parabola that satisfies the given conditions: Vertex 0,0 ; focus 3,0

Solution: \quad Vertex 0,0 ; focus 3,0
Since the vertex of the parabola is 0,0 and the focus lies on the positive x -axis, x -axis is the axis of the parabola, while the equation of the parabola is of the form $\mathrm{y} 2=4 \mathrm{ax}$. Since the focus is $3,0=(a, 0) \Rightarrow a=3$ Thus, the equation of the parabola is $y 2=4 a x$ i.e. $y 2=4 \times 3 x=12 x$

Exercise 11.3

Q.1. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\mathrm{x} 236+\mathrm{y} 216=1$

Solution: The given equation is $\mathrm{x} 236+\mathrm{y} 216=1$.
Here, the denominator of $x 236$ is greater than the denominator of y 216 .
Therefore, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$ we obtain, $\mathrm{a}=6$ and $\mathrm{b}=4$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=36-16=20=25$
Therefore, the coordinates of the foci are 25,0 and $-25,0$. The coordinates of the vertices are 6,0 and $-6,0$. Length of major axis $=2 a=12$ Length of minor axis $=2 b=8$ Eccentricity, $e=c a=256=53$ Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 166=163$
Q.2. Find the equation for the ellipse that satisfy the given conditions: Vertices $\pm 5,0$, foci $\pm 4,0$.

Solution: \quad Vertices $\pm 5,0$, foci $\pm 4,0$
Here, the vertices are on the x -axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis and b is the semi-minor axis.
Accordingly, $a=5$ and $c=4$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$
$\therefore 52=\mathrm{b} 2+42$
$\Rightarrow 25=\mathrm{b} 2+16$
$\Rightarrow \mathrm{b} 2=25-16$
$\Rightarrow \mathrm{b}=9=3$
Thus, the equation of the ellipse is $\mathrm{x} 252+\mathrm{y} 232=1$ or $\mathrm{x} 225+\mathrm{y} 29=1$.
Q.3. Find the equation for the ellipse that satisfy the given conditions: Vertices $0, \pm 13$, foci $0, \pm 5$.

Solution: \quad Vertices $0, \pm 13$, foci $0, \pm 5$
Here, the vertices are on the y-axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, where a is the semi-major axis.
Accordingly, $\mathrm{a}=13$ and $\mathrm{c}=5$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$
$\therefore 132=\mathrm{b} 2+52$
$\Rightarrow 169=\mathrm{b} 2+25$
$\Rightarrow b 2=169-25$
$\Rightarrow \mathrm{b}=144=12$
Thus, the equation of the ellipse is $\mathrm{x} 2122+\mathrm{y} 2132=1$ or $\mathrm{x} 2144+\mathrm{y} 2169=1$.
Q.4. Find the equation for the ellipse that satisfy the given conditions: Vertices $\pm 6,0$, foci $\pm 4,0$.

Solution: Vertices $\pm 6,0$, foci $\pm 4,0$
Here, the vertices are on the x -axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis.
Accordingly, $\mathrm{a}=6, \mathrm{c}=4$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$
$\therefore 62=\mathrm{b} 2+42$
$\Rightarrow 36=\mathrm{b} 2+16$
$\Rightarrow \mathrm{b} 2=36-16$
$\Rightarrow b=20$
Thus, the equation of the ellipse is $\times 262+y 2202=1$ or $\times 236+y 220=1$
Q.5. Find the equation for the ellipse that satisfy the given conditions: Ends of major axis $\pm 3,0$, ends of minor axis $0, \pm 2$.

Solution: Ends of major axis $\pm 3,0$, ends of minor axis $0, \pm 2$ Here, the major axis is along the x -axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis.
Accordingly, $\mathrm{a}=3$ and $\mathrm{b}=2$.
Thus, the equation of the ellipse is $\mathrm{x} 232+\mathrm{y} 222=1$ i.e., $\mathrm{x} 29+\mathrm{y} 24=1$.
Q.6. Find the equation for the ellipse that satisfy the given conditions: Ends of major axis $0, \pm 5$, ends of minor axis $\pm 1,0$.

Solution: \quad Ends of major axis $0, \pm 5$, ends of minor axis $\pm 1,0$.
Here, the major axis is along the y-axis. Therefore, the equation of the ellipse will be of the form
$\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, where a is the semi-major axis.
Accordingly, $\mathrm{a}=5$ and $\mathrm{b}=1$.
Thus, the equation of the ellipse is $\mathrm{x} 212+\mathrm{y} 252=1$ or $\mathrm{x} 21+\mathrm{y} 25=1$.
Q.7. Find the equation for the ellipse that satisfy the given conditions: Length of major axis 26 , foci $\pm 5,0$.

Solution: \quad Length of major axis $=26$; foci $= \pm 5,0$.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis.
Accordingly, $2 \mathrm{a}=26 \Rightarrow \mathrm{a}=13$ and $\mathrm{c}=5$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$
$\therefore 132=\mathrm{b} 2+52$
$\Rightarrow 169=\mathrm{b} 2+25$
$\Rightarrow b 2=169-25$
$\Rightarrow \mathrm{b}=144=12$
Thus, the equation of the ellipse is $x 2132+y 2122=1$ or $x 2169+y 2144=1$
Q.8. Find the equation for the ellipse that satisfy the given conditions: Length of minor axis 16, foci $0, \pm 6$.

Solution: \quad Length of minor axis $=16$; foci $=0, \pm 6$.
Since the foci are on the y-axis, the major axis is along the y-axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, where a is the semi-major axis.
Accordingly, $2 \mathrm{~b}=16 \Rightarrow \mathrm{~b}=8$ and $\mathrm{c}=6$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$.
$\therefore \mathrm{a} 2=82+62=64+36=100$
$\Rightarrow a=100=10$
Thus, the equation of the ellipse is $\mathrm{x} 282+\mathrm{y} 2102=1$ or $\mathrm{x} 264+\mathrm{y} 2100=1$.
Q.9. Find the equation for the ellipse that satisfy the given conditions: Foci $\pm 3,0, a=4$.

Solution: \quad Foci $\pm 3,0, \mathrm{a}=4$
Since the foci are on the x -axis, the major axis is along the x -axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis.
Accordingly, $\mathrm{c}=3$ and $\mathrm{a}=4$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$
$\therefore 42=\mathrm{b} 2+32$
$\Rightarrow 16=\mathrm{b} 2+9$
$\Rightarrow b 2=16-9=7$
Thus, the equation of the ellipse is $x 216+y 27=1$
Q.10. Find the equation for the ellipse that satisfy the given conditions: $b=3, c=4$, centre at the origin; foci on the x axis.

Solution: It is given that $b=3, c=4$, centre at the origin; foci on the x-axis.
Since the foci are on the x-axis, the major axis is along the x-axis.
Therefore, the equation of the ellipse will be of the form $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, where a is the semi-major axis.
Accordingly, $b=3, c=4$.
It is known that $\mathrm{a} 2=\mathrm{b} 2+\mathrm{c} 2$
$\therefore \mathrm{a} 2=32+42=9+16=25$
$\Rightarrow a=5$
Thus, the equation of the ellipse is $\mathrm{x} 252+\mathrm{y} 232=1$ or $\mathrm{x} 225+\mathrm{y} 29=1$.
Q.11. Find the equation for the ellipse that satisfy the given conditions: Centre at 0,0 , major axis on the y-axis and passes through the points 3,2 and 1,6 .

Solution: \quad Since the centre is at 0,0 and the major axis is on the y-axis, the equation of the ellipse will be of the form, $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1 \ldots$ (i)
Where, a is the semi-major axis.
The ellipse passes through points 3,2 and 1, 6 . Hence,
$9 b 2+4 a 2=1 \ldots$ (ii)
$1 \mathrm{~b} 2+36 \mathrm{a} 2=1 \ldots$ (iii)
On solving equations (ii) and (iii), we obtain $\mathrm{b} 2=10$ and $\mathrm{a} 2=40$.
Thus, the equation of the ellipse is $\mathrm{x} 210+\mathrm{y} 240=1$ or $4 \mathrm{x} 2+\mathrm{y} 2=40$.
Q.12. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\times 24+y 225=1$

Solution: The given equation is $\mathrm{x} 24+\mathrm{y} 225=1$ or $\mathrm{x} 222+\mathrm{y} 252=1$.
Here, the denominator of y 225 is greater than the denominator of x 24 .
Therefore, the major axis is along the y -axis, while the minor axis is along the x -axis. On comparing the given equation with $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, we obtain $\mathrm{b}=2$ and $\mathrm{a}=5$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=25-4=21$
Therefore,
The coordinates of the foci are
0,21 and $0,-21$.
The coordinates of the vertices are 0,5 and $0,-5$
Length of major axis $=2 \mathrm{a}=10$
Length of minor axis $=2 b=4$
Eccentricity, e=ca=215
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 45=85$
Q.13. Find the equation for the ellipse that satisfy the given conditions: Major axis on the x -axis and passes through the points 4,3 and $6,2$.

Solution: Since the major axis is on the x -axis, the equation of the ellipse will be of the form
$x 2 a 2+y 2 b 2=1 \ldots$ (i)
Where, a is the semi-major axis
The ellipse passes through points 4,3 and 6,2 . Hence,
$16 \mathrm{a} 2+9 \mathrm{~b} 2=1 \ldots$ (ii)
$36 \mathrm{a} 2+4 \mathrm{~b} 2=1 \ldots$..(iii)
On solving equations (ii) and (iii), we obtain $\mathrm{a} 2=52$ and $\mathrm{b} 2=13$
Thus, the equation of the ellipse is $\mathrm{x} 252+\mathrm{y} 213=1$ or $\mathrm{x} 2+4 \mathrm{y} 2=52$
Q.14. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\mathrm{x} 216+\mathrm{y} 29=1$

Solution: The given equation is $\mathrm{x} 216+\mathrm{y} 29=1$ or $\mathrm{x} 242+\mathrm{y} 232=1$.
Here, the denominator of x 216 is greater than the denominator of y29.
Therefore, the major axis is along the x -axis, while the minor axis is along the y -axis. On comparing the given equation with $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, we obtain $\mathrm{a}=4$ and $\mathrm{b}=3$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=16-9=7$
Therefore, the coordinates of the foci are $\pm 7,0$
The coordinates of the vertices are $\pm 4,0$
Length of major axis $=2 a=8$
Length of minor axis $=2 b=6$
Eccentricity, e=ca=74
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 94=92$
Q.15. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\mathrm{x} 225+\mathrm{y} 2100=1$.

Solution: $/ \int$ The given equation is $\mathrm{x} 225+\mathrm{y} 2100=1$ or $\mathrm{x} 252+\mathrm{y} 2102=1$.
Here, the denominator of y 2100 is greater than the denominator of x 225 .
Therefore, the major axis is along the y-axis, while the minor axis is along the x-axis. On comparing the given equation with $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, we obtain $\mathrm{b}=5$ and $\mathrm{a}=10 . \therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=100-25=75=53$ Therefore, the coordinates of the foci are $0, \pm \mathrm{c}=0, \pm 53$ The coordinates of the vertices are $0, \pm a=0, \pm 10$ Length of major axis $=2 a=20$ Length of minor $\mathrm{axis}=2 \mathrm{~b}=10$ Eccentricity, $\mathrm{e}=\mathrm{ca}=5310=32$ Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 2510=5$
Q.16. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\mathrm{x} 249+\mathrm{y} 236=1$.

Solution: \quad The given equation is $\mathrm{x} 249+\mathrm{y} 236=1$ or $\mathrm{x} 272+\mathrm{y} 262=1$.
Here, the denominator of x 249 is greater than the denominator of y 236 .
Therefore, the major axis is along the x -axis, while the minor axis is along the y -axis. On comparing the given equation with $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, we obtain $\mathrm{a}=7$ and $\mathrm{b}=6$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=49-36=13$
Therefore, the coordinates of the foci are $\pm \mathrm{c}, 0= \pm 13,0$.
The coordinates of the vertices are $\pm \mathrm{a}, 0= \pm 7,0$.
Length of major axis $=2 a=14$
Length of minor axis $=2 \mathrm{~b}=12$
Eccentricity, e=ca=137
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 367=727$
Q.17. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\mathrm{x} 2100+\mathrm{y} 2400=1$.

Solution: The given equation is $\mathrm{x} 2100+\mathrm{y} 2400=1$ or $\mathrm{x} 2102+\mathrm{y} 2202=1$.
Here, the denominator of y2400 is greater than the denominator of x2100.
Therefore, the major axis is along the y-axis, while the minor axis is along the x -axis. On comparing the given equation with $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, we obtain $\mathrm{b}=10$ and $\mathrm{a}=20$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=400-100=300=103$
The coordinates of the foci are $0, \pm \mathrm{c}=0, \pm 103$.
The coordinates of the vertices are $0, \pm \mathrm{a}=0, \pm 20$.
Length of major axis $=2 a=40$.
Length of minor axis $=2 \mathrm{~b}=20$.
Eccentricity, $\mathrm{e}=\mathrm{ca}=10320=32$.
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 10020=10$.
Q.18. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 \times 2+4 y 2=144$

Solution: \quad The given equation is $36 \times 2+4 y 2=144$.
It can be written as
$36 \times 2+4 y 2=144$
or, $\mathrm{x} 24+\mathrm{y} 236=1$
or, $\mathrm{x} 222+\mathrm{y} 262=1 \ldots$ (i)
Here, the denominator of y 262 is greater than the denominator of x 222 .
Therefore, the major axis is along the y-axis, while the minor axis is along the x -axis.
On comparing equation (i) with $\times 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, we obtain $\mathrm{b}=2$ and $\mathrm{a}=6$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=36-4=32=42$
Therefore,
The coordinates of the foci are $0, \pm \mathrm{c}=0, \pm 42$.
The coordinates of the vertices are $0, \pm \mathrm{a}=0, \pm 6$.
Length of major axis $=2 a=12$.
Length of minor axis $=2 b=4$.
Eccentricity, e=ca=426=223.
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 46=43$.
Q.19. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 \times 2+y 2=16$.

Solution: \quad The given equation is $16 \times 2+y 2=16$.
It can be written as
$16 \times 2+y 2=16$
or, $\mathrm{x} 21+\mathrm{y} 216=1$
or, $\mathrm{x} 212+\mathrm{y} 242=1 \ldots$ (i)
Here, the denominator of y 242 is greater than the denominator of x 212 .
Therefore, the major axis is along the y -axis, while the minor axis is along the x -axis.
On comparing equation (i) with $\mathrm{x} 2 \mathrm{~b} 2+\mathrm{y} 2 \mathrm{a} 2=1$, we obtain $\mathrm{b}=1$ and $\mathrm{a}=4$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=16-1=15$
Therefore,
The coordinates of the foci are $0, \pm \mathrm{c}=0, \pm 15$.
The coordinates of the vertices are $0, \pm \mathrm{a}=0, \pm 4$.
Length of major axis $=2 \mathrm{a}=8$.
Length of minor axis $=2 b=2$.
Eccentricity, $\mathrm{e}=\mathrm{ca}=154$.
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 14=12$.
Q.20. Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 \times 2+9 y 2=36$.

Solution: \quad The given equation is $4 \mathrm{x} 2+9 \mathrm{y} 2=36$.
It can be written as
$4 \times 2+9 \mathrm{y} 2=36$
or, $\mathrm{x} 29+\mathrm{y} 24=1$
or, $\mathrm{x} 232+\mathrm{y} 222=1 \ldots$ (i)
Here, the denominator of x 232 is greater than the denominator of y 222 .
Therefore, the major axis is along the x -axis, while the minor axis is along the y -axis. On comparing the given equation with $\mathrm{x} 2 \mathrm{a} 2+\mathrm{y} 2 \mathrm{~b} 2=1$, we obtain $\mathrm{a}=3$ and $\mathrm{b}=2$.
$\therefore \mathrm{c}=\mathrm{a} 2-\mathrm{b} 2=9-4=5$
Therefore,
The coordinates of the foci are $\pm \mathrm{c}, 0= \pm 5,0$.
The coordinates of the vertices are $\pm a, 0= \pm 3,0$.
Length of major axis $=2 \mathrm{a}=6$.
Length of minor axis $=2 b=4$.
Eccentricity, $\mathrm{e}=\mathrm{ca}=53$.
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 43=83$.

Exercise 11.4

Q.1. Find the coordinates of the foci and the vertices, the eccentricity and the length of the lotus rectum of the hyperbola $\mathrm{x} 216-\mathrm{y} 29=1$.

Solution: The given equation is $\mathrm{x} 216-\mathrm{y} 29=1$ or $\mathrm{x} 242-\mathrm{y} 232=1$
On comparing this equation with the standard equation of hyperbola i.e., $x 2 a 2-y 2 b 2=1$, we obtain $a=4$ and $b=3$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{c} 2=42+32=25$
$\Rightarrow \mathrm{c}=5$
Therefore,
The coordinates of the foci are $\pm 5,0$.
The coordinates of the vertices are $\pm 4,0$.
Eccentricity, e=ca=54
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 94=92$
Q.2. Find the equation of the hyperbola satisfying the given conditions: Foci $\pm 5,0$, the transverse axis is of length 8 .

Solution: \quad Foci $\pm 5,0$, the transverse axis is of length 8.
Here, the foci are on the x -axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{x} 2 \mathrm{a} 2-\mathrm{y} 2 \mathrm{~b} 2=1$.
Since the foci are $\pm 5,0, c=5$.
Since the length of the transverse axis is $8,2 a=8 \Rightarrow a=4$.
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$.
$\therefore 42+\mathrm{b} 2=52$
$\Rightarrow b 2=25-16=9$
Thus, the equation of the hyperbola is $\mathrm{x} 216-\mathrm{y} 29=1$.
Q.3. Find the equation of the hyperbola satisfying the given conditions: Foci $0, \pm 13$, the conjugate axis is of length 24 .

Solution: \quad Foci $0, \pm 13$, the conjugate axis is of length 24.
Here, the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{y} 2 \mathrm{a} 2-\mathrm{x} 2 \mathrm{~b} 2=1$
Since the foci are $0, \pm 13, c=13$.
Since the length of the conjugate axis is $24,2 b=24 \Rightarrow b=12$.
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$.
$\therefore \mathrm{a} 2+122=132$
$\Rightarrow \mathrm{a} 2=169-144=25$
Thus, the equation of the hyperbola is $\mathrm{y} 225-\mathrm{x} 2144=1$.
Q.4. Find the equation of the hyperbola satisfying the given conditions: Foci $\pm 35,0$, the latus rectum is of length 8 .

Solution: (Step1: Foci $\pm 35,0$, the latus rectum is of length 8
Here, the foci are on the x -axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{x} 2 \mathrm{a} 2-\mathrm{y} 2 \mathrm{~b} 2=1$.
Since the foci are $\pm 35,0, c=35$.
Length of latus rectum $=8$.
$\Rightarrow 2 \mathrm{~b} 2 \mathrm{a}=8$
$\Rightarrow \mathrm{b} 2=4 \mathrm{a}$
We know that, $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{a} 2+4 \mathrm{a}=45$
$\Rightarrow \mathrm{a} 2+4 \mathrm{a}-45=0$
$\Rightarrow a 2+9 a-5 a-45=0$
$\Rightarrow a+9 a-5=0$
$\Rightarrow \mathrm{a}=-9$ or 5
Since a is non-negative, $a=5$
$\therefore \mathrm{b} 2=4 \mathrm{a}=4 \times 5=20$
Thus, the equation of the hyperbola is $\times 225-\mathrm{y} 220=1$
Q.5. Find the equation of the hyperbola satisfying the given conditions: Foci $\pm 4,0$, the latus rectum is of length 12 .

Solution: Given that: Foci is $\pm 4,0$ and the latus rectum is of length 12 . Here, the foci are on the x -axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{x} 2 \mathrm{a} 2-\mathrm{y} 2 \mathrm{~b} 2=1$.
Since the foci are $\pm 4,0, c=4$.
Length of latus rectum $=12$
$\Rightarrow 2 \mathrm{~b} 2 \mathrm{a}=12 \Rightarrow \mathrm{~b} 2=6 \mathrm{a}$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{a} 2+6 \mathrm{a}=16$
$\Rightarrow \mathrm{a} 2+6 \mathrm{a}-16=0 \Rightarrow \mathrm{a} 2+8 \mathrm{a}-2 \mathrm{a}-16=0 \Rightarrow \mathrm{a}+8 \mathrm{a}-2=0 \Rightarrow \mathrm{a}=-8,2$ Since a is non-negative, $\mathrm{a}=2 \therefore \mathrm{~b} 2=6 \mathrm{a}=6 \times 2=12$
Thus, the equation of the hyperbola is $\mathrm{x} 24-\mathrm{y} 212=1$
Q.6. Find the equation of the hyperbola satisfying the given conditions: Vertices $\pm 7,0, \mathrm{e}=43$.

Solution: Given that: Vertices are $\pm 7,0$ and $\mathrm{e}=43$.
Here, the vertices are on the x-axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{x} 2 \mathrm{a} 2-\mathrm{y} 2 \mathrm{~b} 2=1$
Since the vertices are $\pm 7,0, a=7$.
It is given that $\mathrm{e}=43$.
$\therefore c a=43 \mathrm{e}=\mathrm{ca}$
$\Rightarrow \mathrm{c} 7=43$
$\Rightarrow \mathrm{c}=283$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore 72+\mathrm{b} 2=2832$
$\Rightarrow \mathrm{b} 2=7849-49$
$\Rightarrow \mathrm{b} 2=784-4419=3439$
Thus, the equation of the hyperbola is $\mathrm{x} 249-9 \mathrm{y} 2343=1$.
Q.7. Find the equation of the hyperbola satisfying the given conditions: Foci $0, \pm 10$, passing through 2,3 .

Solution: Given that: Foci are $0, \pm 10$, and the hyperbola is passing through 2,3 .
Here, the foci are on the y -axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{y} 2 \mathrm{a} 2-\mathrm{x} 2 \mathrm{~b} 2=1$.
Since the foci are $0, \pm 10, c=10$.
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{a} 2+\mathrm{b} 2=10$
$\Rightarrow \mathrm{b} 2=10-\mathrm{a} 2 \ldots$ (i)
Since the hyperbola passes through point 2,3 , the point will satisfy the equation of the parabola.
Therefore, $9 \mathrm{a} 2-4 \mathrm{~b} 2=1 \ldots$ (ii)
From equations (i) and (ii), we obtain
9a2-410-a2=1
$\Rightarrow 910-\mathrm{a} 2-4 \mathrm{a} 2=\mathrm{a} 210-\mathrm{a} 2$
$\Rightarrow 90-9 \mathrm{a} 2-4 \mathrm{a} 2=10 \mathrm{a} 2-\mathrm{a} 4$
$\Rightarrow a 4-23 \mathrm{a} 2+90=0$
$\Rightarrow \mathrm{a} 4-18 \mathrm{a} 2-5 \mathrm{a} 2+90=0$
$\Rightarrow \mathrm{a} 2 \mathrm{a} 2-18-5 \mathrm{a} 2-18=0$
$\Rightarrow \mathrm{a} 2-18 \mathrm{a} 2-5=0$
$\Rightarrow a 2=18$ or 5
In hyperbola, $\mathrm{c}>$ a, i.e. $\mathrm{c} 2>\mathrm{a} 2$
$\therefore \mathrm{a} 2=5$
$\Rightarrow \mathrm{b} 2=10-\mathrm{a} 2=10-5=5$
Thus, the equation of the hyperbola is $\mathrm{y} 25-\mathrm{x} 25=1$
Q.8. Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\mathrm{y} 29-\mathrm{x} 227=1$

Solution: The given equation is $\mathrm{y} 29-\mathrm{x} 227=1$ or $\mathrm{y} 232-\mathrm{x} 2272=1$
On comparing this equation with the standard equation of hyperbola $y 2 a 2-x 2 b 2=1$ i.e., we obtain $a=3$ and $b=27$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{c} 2=32+272=9+27=36$
$\Rightarrow \mathrm{c}=6$
Therefore,
The coordinates of the foci are $0, \pm 6$.
The coordinates of the vertices are $0, \pm 3$.
Eccentricity, e=ca=63=2.
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 273=18$.
Q.9. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola $9 \mathrm{y} 2-4 \mathrm{x} 2=36$.

Solution: \quad The given equation is $9 \mathrm{y} 2-4 \times 2=36$
It can be written as
$9 y 2-4 \times 2=36$
Or, y24-x29=1
Or, y $222-\mathrm{x} 232=1 \ldots$ (i)
On comparing equation (i) with the standard equation of hyperbola $\mathrm{y} 2 \mathrm{a} 2-\mathrm{x} 2 \mathrm{~b} 2=1$, we obtain $\mathrm{a}=2$ and $\mathrm{b}=3$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{c} 2=4+9=13$
$\Rightarrow c=13$
Therefore,
The coordinates of the foci are $0, \pm 13$.
The coordinates of the vertices are $0, \pm 2$.
Eccentricity, e=ca=132.
Length of latus rectum $=2 b 2 a=2 \times 92=9$.
Q.10. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola $16 \times 2-9 y 2=576$.

Solution: The given equation is $16 \times 2-9 y 2=576$
It can be written as
$16 \times 2-9 y 2=576$
$\Rightarrow \mathrm{x} 236-\mathrm{y} 264=1$
$\Rightarrow \mathrm{x} 262-\mathrm{y} 282=1 \ldots$ (i)
On comparing equation (i) with the standard equation of hyperbola i.e., $x 2 a 2-y 2 b 2=1$, we obtain $a=6$ and $b=8$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{c} 2=36+64=100$
$\Rightarrow c=10$
Therefore,
The coordinates of the foci are $\pm \mathrm{c}, 0= \pm 10,0$.
The coordinates of the vertices are $\pm \mathrm{a}, 0= \pm 6,0$.
Eccentricity, e=ca=106=53.
Length of latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 646=643$.
Q.11. Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y 2-9 \times 2=36$.

Solution: The given equation is $5 \mathrm{y} 2-9 \times 2=36$
$\Rightarrow y 2365-x 24=1$
$\Rightarrow \mathrm{y} 2652-\mathrm{x} 222=1$...(i)
On comparing equation (i) with the standard equation of hyperbola i.e., $y 2 a 2-x 2 b 2=1$, we obtain $a=65$ and $b=2$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{c} 2=365+4=565$
$\Rightarrow c=565=2145$
Therefore, the coordinates of the foci are $0, \pm \mathrm{c}=0, \pm 2145$.
The coordinates of the vertices are $0, \pm \mathrm{a}=0, \pm 65$.
Eccentricity, $\mathrm{e}=\mathrm{ca}=214565=143$.
Length of the latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 465=453$.
Q.12. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola $49 \mathrm{y} 2-16 \mathrm{x} 2=784$.

Solution: \quad The given equation is $49 \mathrm{y} 2-16 \mathrm{x} 2=784$
It can be written as
$49 \mathrm{y} 2-16 \times 2=784$
Or, y216-x249=1
Or, y242-x272=1...(i)
On comparing equation (i) with the standard equation of hyperbola i.e., $\mathrm{y} 2 \mathrm{a} 2-\mathrm{x} 2 \mathrm{~b} 2=1$, we obtain $\mathrm{a}=4 \mathrm{and} \mathrm{b}=7$
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$
$\therefore \mathrm{c} 2=16+49=65$
$\Rightarrow \mathrm{c}=65$
Therefore,
The coordinates of the foci are $0, \pm \mathrm{c}=0, \pm 65$.
The coordinates of the vertices are $0, \pm \mathrm{a}=0, \pm 4$.
Eccentricity, e=ca=654.
Length of the latus rectum $=2 \mathrm{~b} 2 \mathrm{a}=2 \times 494=492$.
Q.13. Find the equation of the hyperbola satisfying the given conditions: Vertices $\pm 2,0$, foci $\pm 3,0$.

Solution: \quad Vertices $\pm 2,0$, foci $\pm 3,0$.
Here, the vertices are on the x -axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{x} 2 \mathrm{a} 2-\mathrm{y} 2 \mathrm{~b} 2=1$.
Since the vertices are $\pm 2,0, \mathrm{a}=2$.
Since the foci are $\pm 3,0, c=3$.
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$.
$\therefore 22+\mathrm{b} 2=32$
b2 $2=9-4=5$
Thus, the equation of the hyperbola is $\mathrm{x} 24-\mathrm{y} 25=1$.
Q.14. Find the equation of the hyperbola satisfying the given conditions: Vertices $0, \pm 5$, foci $0, \pm 8$.

Solution: \quad Vertices $0, \pm 5$, foci $0, \pm 8$
Here, the vertices are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{y} 2 \mathrm{a} 2-\mathrm{x} 2 \mathrm{~b} 2=1$.
Since the vertices are $0, \pm 5, \mathrm{a}=5$.
Since the foci are $0, \pm 8, \mathrm{c}=8$.
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$.
$\therefore 52+\mathrm{b} 2=82$
b2 $=64-25=39$
Thus, the equation of the hyperbola is $\mathrm{y} 225-\mathrm{x} 239=1$.
Q.15. Find the equation of the hyperbola satisfying the given conditions: Vertices $0, \pm 3$, foci $0, \pm 5$.

Solution: \quad Vertices $0, \pm 3$, foci $0, \pm 5$
Here, the vertices are on the y-axis.
Therefore, the equation of the hyperbola is of the form $\mathrm{y} 2 \mathrm{a} 2-\mathrm{x} 2 \mathrm{~b} 2=1$
Since the vertices are $0, \pm 3, a=3$.
Since the foci are $0, \pm 5, \mathrm{c}=5$.
We know that $\mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2$.
$\therefore 32+\mathrm{b} 2=52$
$\Rightarrow b 2=25-9=16$
Thus, the equation of the hyperbola is $\mathrm{y} 29-\mathrm{x} 216=1$.

