CBSE NCERT Solutions for Class 11 mathematics Chapter 15

Miscellaneous exercise on chapter 15

Q.1. The mean and variance of eight observations are 9 and 9.25 , respectively. If six of the observations are $6,7,10,12,12$ and 13 , find the remaining two observations.

Solution: Given: The mean and variance of eight observations are 9 and 9.25 , respectively. If six of the observations are $6,7,10,12,12$ and 13 , find the remaining two observations.

Let the remaining two observations be x and y
Therefore, the observations are $6,7,10,12,12,13, x, y$ Mean, $x^{-}=6+7+10+12+12+13+x+y 8=9 \Rightarrow 60+x+y=72 \Rightarrow x+y=12 \ldots .$. (1)
Variance $\sigma 2=9.25=\ln \sum \mathrm{i}=18 \mathrm{xi}-\mathrm{x}^{-} 2$
$9.25=18(-3) 2+(-2) 2+(1) 2+(3) 2+(3) 2+(4) 2+x 2+y 2-2 \times 9(x+y)+2 \times(9) 2$
$9.25=189+4+1+9+9+16+\mathrm{x} 2+\mathrm{y} 2-18(12)+162[$ Using (1)] $9.25=1848+\mathrm{x} 2+\mathrm{y} 2-216+162$
$9.25=18 \mathrm{x} 2+\mathrm{y} 2-6 \Rightarrow \mathrm{x} 2+\mathrm{y} 2=80 \ldots \ldots$.(2)
From (1), we obtain
$x 2+y 2+2 x y=144 \ldots \ldots$ (3)
From (2) and (3), we obtain $2 x y=64 \ldots \ldots$ (4) Subtracting 4 from 2, we obtain $x 2+y 2-2 x y=80-64=16 \Rightarrow x-y= \pm 4 \ldots \ldots$ (5) Therefore, from 1 and 5 , we obtain $x=8$ and $y=4$ when $x-y=4 x=4$ and $y=8$, when $x-y=-4$ Thus, the remaining observations are 4 and 8 .
Q.2. The mean and variance of 7 observations are 8 and 16 , respectively. If five of the observations are $2,4,10,12$ and 14 . Find the remaining two observations.

Solution: Given: The mean and variance of 7 observations are 8 and 16 , respectively. If five of the observations are $2,4,10,12$ and 14 . Find the remaining two observations.
Let the remaining two observations be x and y.
The observations are $2,4,10,12,14, x, y$ Mean, $x^{-}=2+4+10+12+14+x+y 7=8 \Rightarrow 56=42+x+y \Rightarrow x+y=14 \ldots \ldots$ (1)
If $x i$ denotes the observations
then find the values for $\mathrm{x} 1-\mathrm{x}, \mathrm{x} 2-\mathrm{x}, \ldots \ldots \ldots, \mathrm{x} 7-\mathrm{x}$
and add them
Variance, $\sigma 2=16=\ln \sum i=17 x i-x^{-} 2$
$16=17(-6) 2+(-4) 2+(2) 2+(4) 2+(6) 2+x 2+y 2-2 \times 8(x+y)+2 \times(8) 2$
$16=1736+16+4+16+36+x 2+y 2-16(14)+2(64)[U \operatorname{sing}(1)] 16=17108+x 2+y 2-224+128 \quad 16=1712+x 2+y 2 \Rightarrow x 2+y 2=112-12=100 \times 2+y 2=100 \ldots . .(2)$
From (1), we obtain
$x 2+y 2+2 x y=196$ On squaring both sides of 1
From 1 and 2, we obtain $2 x y=196-100 \Rightarrow 2 x y=96 \ldots \ldots$ (3) Subtracting (3) from (2), we obtain $x 2+y 2-2 x y=100-96 \Rightarrow(x-y) 2=4 \Rightarrow x-y= \pm 2 \ldots \ldots$ (5) Therefore, On solving (1) and (5), we obtain $x=8$ and $y=6$ when $x-y=2 x=6$ and $y=8$ when $x-y=-2$ Thus, the remaining observations are 6 and 8 .
Q.3. The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3 , find the new mean and new standard deviation of the resulting observations.

Solution: Let the observations be $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5$, and x 6
It is given that mean is 8 and standard deviation is 4 .
Mean, $\mathrm{x}_{-}^{-}=\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4+\mathrm{x} 5+\mathrm{x} 66=8 \ldots$.(1) If each observation is multiplied by 3 and the resulting observations are yi , then $\mathrm{yi}=3 \mathrm{xi}$ i.e., $\mathrm{xi}=13 \mathrm{yi}$, for $\mathrm{i}=1$ to $6 \therefore$ New mean, $y^{-}=y 1+y 2+y 3+y 4+y 5+y 66=3 x 1+x 2+x 3+x 4+x 5+x 66=3 \times 8[U \operatorname{sing}(1)]=24$

Standard deviation, $\sigma=\ln \sum i=16 x i-x^{-} 2$
\therefore (4) $2=16 \sum \mathrm{i}=16 \mathrm{xi}^{-}-2$ [Square both sides of the equation]
$\sum \mathrm{i}=16 \mathrm{xi}-\mathrm{x}^{-} 2=96 \ldots \ldots$ (2) From the above, it can be observed that, $\mathrm{y}^{-}=3 \mathrm{x}^{-} \Rightarrow \mathrm{x}^{-}=13 \mathrm{y}^{-}$and also we have $\mathrm{xi}=13 \mathrm{yi}$ Substituting the values of xi and x^{-}in (2), we obtain $\sum \mathrm{i}=1613 \mathrm{yi}-13 \mathrm{y}^{-} 2=96 \Rightarrow 13 \sum \mathrm{i}=16 \mathrm{yi}-\mathrm{y}^{-} 2=96 \Rightarrow \sum \mathrm{i}=16 \mathrm{yi}^{-} \mathrm{y}^{-} 2=864$ Therefore, variance of new observations $=16 \times 864=144$ Hence, the standard deviation of new observations is $144=12$
Q.4. Given that x^{-}is the mean and $\sigma 2$ is the variance of n observations $x 1, x 2, \ldots, x n$. Prove that the mean and variance of the observations ax 1 , ax 2 , ax $3, \ldots, a x n$ are $a x$ and a2 $\sigma 2$, respectively, $(a \neq 0)$.

Solution: The given n observations are $\mathrm{x} 1, \mathrm{x} 2 \ldots \mathrm{xn}$
Mean $=\mathrm{x}^{-}=\ln \sum \mathrm{i}=\ln \mathrm{xi}$
Variance $=\sigma 2 \therefore \sigma 2=\ln \sum \mathrm{i}=\ln x i-x^{-} 2 \ldots \ldots(1)$
New mean $=y$ If each observation is multiplied by a and the new observations are y i, then $y i=a x i$ i.e., $x i=1 a y i ~2$
$\therefore y^{-}=\ln \sum i=\ln y i=\ln \sum i=\ln a x i=a n \sum i=\ln x i=a x^{-} x^{-}=\ln \sum i=\ln x i$
Therefore, mean of the observations, ax 1, ax $2 \ldots$ axn, is ax ${ }^{-}$
i.e., $\mathrm{y}=\mathrm{ax} \Rightarrow \mathrm{x}=1$ ay 3

Substituting the values of x and x^{-}in 1 from 2 and 3 we obtain
$\sigma 2=\ln \sum \mathrm{i}=\ln 1$ ayi-1ay ${ }^{-} 2 \Rightarrow \sigma 2=1 \mathrm{a} 2 \mathrm{n} \sum \mathrm{i}=\operatorname{lnyi}-\mathrm{y}^{-} 2$
$\Rightarrow \mathrm{a} 2 \sigma 2=\ln \sum \mathrm{i}=1$ nyi- ${ }^{-} 2$ Thus, the variance of the observations, $\mathrm{ax} 1, \mathrm{ax} 2 \ldots \mathrm{axn}$ is $\mathrm{a} 2 \sigma 2$.
Q.5. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in the following case: If wrong item is omitted.

Solution:
Number of observations $(n)=20$
Incorrect mean $=10$
Incorrect standard deviation $=2 \mathrm{x}^{-}=\ln \sum \mathrm{i}=120 \mathrm{xi} 10=120 \sum \mathrm{i}=120 \mathrm{xi} \Rightarrow \sum \mathrm{i}=120 \mathrm{xi}=200$ That is, incorrect sum of observations $=200$ Correct sum of observations $=200-8=192$ \therefore Correct mean $=$ Correct sum 19=19219=10.1

Standard deviation, incorrect $\sigma=1$ nincorrect $\sum \mathrm{i}=\ln$ ni2 $-\ln 2 \sum \mathrm{i}=\ln x i 2$
$\Rightarrow 2=1$ nincorrect $\sum \mathrm{i}=1$ nxi2-incorrect $\ln \sum \mathrm{i}=1$ nxi 2
$\Rightarrow 2=1$ nincorrect $\sum \mathrm{i}=1$ nxi2-(incorrect $\left.\mathrm{x}^{-}\right) 2$ as, $\ln \sum \mathrm{i}=1 \mathrm{nx}=\mathrm{x}^{-} \Rightarrow 2=120 \times$ Incorrect $\sum \mathrm{i}=1$ nxi2-(10) $2 \Rightarrow 4=120 \times$ Incorrect $\sum \mathrm{i}=\ln$ nxi2-100 $\Rightarrow 120 \times$ Incorrect $\sum \mathrm{i}=1 \mathrm{nxi} 2=104 \Rightarrow$ Incorrect $\sum \mathrm{i}=\ln$ ni $2=2080$ Now, correct $\sum \mathrm{i}=1 \mathrm{nxi} 2=$ Incorrect $\sum \mathrm{i}=\ln x i 2-(8) 2 \Rightarrow$ correct $\sum \mathrm{i}=\ln x i 2=2080-64=2016$ Correct Standard Deviation $=1$ ncorrect $\sum \mathrm{i}=1$ nxi2- $($ correct mean $) 2 \Rightarrow$ Correct Standard Deviation $=119 \times 2016-192192 \Rightarrow$ Correct Standard Deviation $=201619-192192 \Rightarrow$ Correct Standard Deviation $=144019=121019 \Rightarrow$ Correct Standard Deviation $=12 \times 3.16219=1.997$
Q.6. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean and standard deviation in the case: If it is replaced by 12 .

Solution:
Given,
number of observations $n=20$
Incorrect meanx $=10$ and
Incorrect standard deviation=2
We know that,
incorrect $x=1$ nincorrect $\sum x i i=1$ ni
$\Rightarrow 10=120$ incorrect $\sum \mathrm{xii}=1 \mathrm{n}$
\Rightarrow incorrect $\sum \mathrm{xii}=1 \mathrm{n}$
Thus, incorrect sum of observations $=200$
Finding correct sum of observations,
Since 8 is replaced by 12 ,
\therefore Correct sum of observations $=200-8+12=204$
\therefore Correct mean $=$ Correct sum 20 $=20420=10.2$
Finding incorrect Standard deviation,
incorrect $\sigma=1$ nincorrect $\sum \quad \mathrm{i}=1$
$\Rightarrow 2=120$ Incorrect $\sum \mathrm{i}=\ln x i 2-(10) 2$
On squaring both sides of the equation we have,
$\Rightarrow 4=120$ Incorrect $\sum \mathrm{i}=1$ nxi2-(10)2
$\Rightarrow 120$ incorrect $\sum \mathrm{i}=1 \mathrm{nxi} 2=4+100=104 \Rightarrow$ incorrect $\sum \mathrm{i}=1$ nxi $2=104 \times 20=2080$
\Rightarrow Incorrect $\sum \mathrm{i}=1$ nxi $2=2080$
\therefore Correct $\sum \mathrm{i}=\operatorname{lnxi} 2=$ Incorrect $\sum \mathrm{i}=\operatorname{lnxi} 2-(8) 2+(12) 2 \quad=2080-64+144 \quad=2160 \therefore$ Correct standard deviation
$=$ Correct $\sum \mathrm{xi} 2 \mathrm{n}-($ Correct mean $) 2=216020-(10.2) 2=108-104.04=3.96=1.98$
Q.7. The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Subject	Mathematics	Physics	Chemistry
Mean	42	32	40.9
Standard deviation	12	15	20

Which of the three subjects shows the highest variability in marks and which shows the lowest?
Solution:
Given,
Standard deviation and mean of Mathematics is 12 and 42 respectively.
Standard deviation and mean of Physics is 15 and 32 respectively.
Standard deviation and mean of Chemistry 20 and 40.9 respectively. The coefficient of variation (C.V.) is given by Standard deviation Mean $\times 100 \mathrm{C}$.V. (in Mathematics) $=1242 \times 100=28.57$ C.V.(in Physics) $=1532 \times 100=46.87$ C.V.(in Chemistry) $=2040.9 \times 100=48.89$ The subject with greater C.V. is more variable than others. Therefore, the highest variability in marks is in Chemistry and the lowest variability in marks is in Mathematics.
Q.8. The mean and standard deviation of a group of 100 observations were found to be 20 and 3 , respectively. Later on it was found that three observations were incorrect, which were recorded as 21,21 and 18 . Find the mean and standard deviation if the incorrect observations are omitted.
Solution: \quad Number of observations $(n)=100$
Incorrect mean (x - $=20$
Incorrect standard deviation $(\sigma)=3$
We know that,
Incorrect meanx $=\ln$ Incorrect \sum xii $=1 n \Rightarrow 20=1100$ Incorrect \sum xii $=1100 \Rightarrow$ Incorrect \sum xii $=1 n=20 \times 100=2000 \therefore$ Incorrect sum of observations $=2000$
Since, 21, 21 and 18 were three incorrect observations \therefore Correct sum of observations $=2000-21-21-18=2000-60=1940 \therefore$ Correct Mean=Correctsum100-3=194097=20
Incorrect Standard deviationIncorrect $(\sigma)=\ln$ Incorrect $\sum x i i=\ln -\ln 2 \operatorname{Incorrect} \sum i=1$ nxi2 $=\ln \operatorname{Incorrect} \sum i=1$ nxi2-($\left.x^{-}\right) 2$
$\Rightarrow 3=1100 \times$ Incorrect \sum xi2-(20)2
$\Rightarrow 9=1100 \times$ Incorrect \sum xi2-202
\Rightarrow Incorrect $\sum \mathrm{xi} 2=100(9+400)=40900$ Correct $\sum \mathrm{i}=1$ nxi2 $=$ Incorrect $\sum \mathrm{i}=1$ nxi2-(21)2-(21)2-(18)2 $=40900-441-441-32439694 \therefore$ Correct standard deviation $=$ Correct \sum xi2n- $($ Correct mean $) 2=3969497-(20) 2=409.216-400=9.216=3.036$

Mathematics Textbook for Class 11

Exercise 15.1
Q.1. Find the mean deviation about the mean for the data. $4,7,8,9,10,12,13,17$
3
Solution: The given data is
$4,7,8,9,10,12,13,17$
We proceed step-wise and get the following:
Step 1 Mean of the data $x^{-}=4+7+8+9+10+12+13+178=808=10$
Step 2 The deviations of the respective observations from the mean x, i.e. $x i-x^{-}$, for each of the values.
Step 3 The absolute values of the deviations, i.e. $\left|x i-x^{-}\right|$, are
6, 3, 2, 1, 0,2, 3, 7
Step 4 The required mean deviation about the mean is $M \cdot D \cdot x^{-}=\sum i=18|x i-x-| 8=6+3+2+1+0+2+3+78=248=3$
Therefore, the mean deviation about the median for the given data is 3 .
Q.2. Find the mean deviation about the mean for the data

Height in cms	Number of Boys
$95-105$	9
$105-115$	13
$115-125$	26
$125-135$	30
$135-145$	12
$145-155$	10

11.28

Solution: The following table is formed.

Height in cms	Number of boys fi	Mid-point xi	fixi	xi-x
$95-105$	9	100	900	25.3
fixi- x^{-}				
$105-115$	13	110	1430	15.3
$115-125$	26	120	3120	5.3
$125-135$	30	130	3900	4.7
$135-145$	12	140	1680	14.7
$145-155$	10	150	1500	24.7

Here, $\mathrm{N}=\sum \mathrm{i}=16 \mathrm{fi}=100, \sum \mathrm{i}=16$ fixi $=12530 \therefore \mathrm{x}^{-}=1 \mathrm{~N} \sum \mathrm{i}=16$ fixi $=1100 \times 12530=125.3$ M.D. $\left(\mathrm{x}^{-}\right)=1 \mathrm{~N} \sum \mathrm{i}=16$ fixi $-\mathrm{x}^{-}=1100 \times 1128.8=11.28$ Therefore, the mean deviation about the mean for the given data is 11.28 .
Q.3. Find the mean deviation about median for the following data:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of Girls	6	8	14	16	4	2

10.342

Solution: \quad The following table is formed.

Marks	Number of girls fi	Cumulative frequency c.f.	Mid-Point xi	xi-M
fixi-Med.				
$0-10$	6	6	5	22.85
$10-20$	8	14	15	12.85
$20-30$	14	28	25	2.85
$30-40$	16	44	35	7.15
$40-50$	4	48	45	17.9
$50-60$	2	50	55	27.15
	50			68.6

The class interval containing the N 2 th or 25 th item is $20-30$. Therefore, $20-30$ is the median class.
It is known that,
Median $=1+\mathrm{N} 2-\mathrm{Cf} \times \mathrm{h}$
Here, $\mathrm{l}=20, \mathrm{C}=14, \mathrm{f}=14, \mathrm{~h}=10$ and $\mathrm{N}=50 \therefore$ Median $=20+25-1414 \times 10=20+11014=20+7.85=27.85$
Thus, mean deviation about the median is given by,
M.D. $\mathrm{M}=1 \mathrm{~N} \sum \mathrm{i}=16$ fixi $-\mathrm{M}=150 \times 517.1=10.34$

Therefore, the mean deviation of the given data about the median is 10.342 .
Q.4. Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age (in years)	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$	$46-50$	$51-55$
Number	5	6	12	14	26	12	16	9

Solution: The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows.

Age	Number fi	Cumulative frequency (c.f.)	
15.5-20.5	5	5	
20.5-25.5	6	11	
25.5-30.5	12	23	
30.5-35.5	14	37	
35.5-40.5	26	63	
40.5-45.5	12	75	
45.5-50.5	16	91	
50.5-55.5	9	100	
	100		

The class interval containing the Nth2 or 50th items is 35.5-40.5 Therefore, 35.5-40.5 is the median class (median class is the class interval whose cumulative frequency is just greater than or equal to N 2)

It is known that,
Median $=1+\mathrm{N} 2-\mathrm{Cf} \times \mathrm{h}$
Here, $\mathrm{l}=35.5, \mathrm{C}=37, \mathrm{f}=26, \mathrm{~h}=5$, and $\mathrm{N}=100 \therefore$ Median $=35.5+50-3726 \times 5=35.5+13 \times 526=35.5+2.5=38$
Thus, mean deviation about the median is given by,
M.D. $(M)=1 N \sum i=1$ nfixi $-M=1100 \times 735=7.35$
Q.5. Find the mean deviation about the mean for the data. Write the answer upto 1 decimal place. $38,70,48,40,42,55,63,46,54,44$.

Solution: \quad The given data is $38,70,48,40,42,55,63,46,54,44$.
Mean of the given data,
$x^{-}=38+70+48+40+42+55+63+46+54+4410=50010=50$
The deviations of the respective observations from the mean x^{-}, i.e. $\mathrm{x}-\mathrm{x}^{-}$, are
$-12,20,-2,-10,-8,5,13,-4,4,-6$.
The absolute values of the deviations, i.e. $x i-x^{-}$are
$12,20,2,10,8,5,13,4,4,6$.
The required mean deviation about the mean is M.D: $\mathrm{x}^{-}=\sum \mathrm{i}=110 \mathrm{xi}-\mathrm{x}^{-} 10=12+20+2+10+8+5+13+4+4+610=8410=8.4$
Therefore, the mean deviation about the mean for the given data is 8.4 .
Q.6. Find the mean deviation about the median for the data.
$13,17,16,14,11,13,10,16,11,18,12,17$
2.33

Solution: The given data is
$13,17,16,14,11,13,10,16,11,18,12,17$
Here, the numbers of observations are 12 , which is even.
Arranging the data in ascending order, we obtain $10,11,11,12,13,13,14,16,16,17,17,18$ Median, $\mathrm{M}=122$ thobservation $+122+1$ thobservation 2 $=6$ thobservation +7 thobservation $2=13+142=272=13.5$

The deviations of the respective observations from the median, i.e. xi-M, are
$-3.5,-2.5,-2.5,-1.5,-0.5,-0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The absolute values of the deviations, xi-M, are $3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$ The required mean deviation about the median is
M.D. $\mathrm{M}=\sum \mathrm{i}=112 \mathrm{xi}-\mathrm{M} 12=3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.512=2812=2.33$. Therefore, the mean deviation about the median for the given data is 2.33 .
Q.7. Find the mean deviation about the median for the data.
$36,72,46,42,60,45,53,46,51,49$
7
Solution: The given data is
$36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is 10 , which is even. Arranging the data in ascending order, we obtain $36,42,45,46,46,49,51,53,60,72$ Median, $\mathrm{M}=102$ thobservation $+102+1$ thobservation $2=5$ thobservation+6thobservation $2=46+492=952=47.5$

The deviations of the respective observations from the median, i.e. xi-M, are
$-11.5,-5.5,-2.5,-1.5,-1.5,1.5,3.5,5.5,12.5,24.5$
The absolute values of the deviations, xi-M, are
$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$
Thus, the required mean deviation about the median is M.D. $\mathrm{M}=\sum \mathrm{i}=110 x \mathrm{i}-\mathrm{M} 10=11.5+5 \cdot 5+2 \cdot 5+1.5+1.5+1.5+3 \cdot 5+5 \cdot 5+12 \cdot 5+24 \cdot 510=7010=7$.
Q.8. Find the mean deviation about the mean for the data.

xi	5	10	15	20	25
fi	7	4	6	3	5

Solution:

xi	fi	fixi	xi-x	fixi-x $-{ }^{-}$
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

$\mathrm{N}=\sum \mathrm{i}=15 \mathrm{fi}=25$
$\sum \mathrm{i}=15$ fixi $=350 \therefore \mathrm{x}^{-}=1 \mathrm{~N} \sum \mathrm{i}=15$ fixi $=125 \times 350=14 \therefore \mathrm{MDx}^{-}=1 \mathrm{~N} \sum \mathrm{i}=15$ fixi $-\mathrm{x}-=125 \times 158=6.32$ Therefore, the mean deviation about the mean for the given data is 6.32 .
Q.9. Find the mean deviation about the mean for the data

xi	10	30	50	70	90
fi	4	24	28	16	8

16
Solution:

xi	fi	fixi	xi-x	fixi-x
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

$$
\mathrm{N}=\sum \mathrm{i}=15 \mathrm{fi}=80, \sum \mathrm{i}=15 \mathrm{fixi}=4000
$$

$\therefore \mathrm{x}^{-}=1 \mathrm{~N} \sum \mathrm{i}=15$ fixi $=180 \times 4000=50 \therefore \mathrm{MDx}^{-}=1 \mathrm{~N} \sum \mathrm{i}=15$ fixi $-\mathrm{x}^{-}=180 \times 1280=16$ Therefore, the mean deviation about the mean for the given data is 16 .
Q.10. Find the mean deviation about the median for the data

xi	5	7	9	10	12	15
fi	8	6	2	2	2	6

3.23

Solution:
The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

xi	fi	c.f.
5	8	8
7	6	14
9	2	16
10	2	18
12	2	20
15	6	26

Here, $\mathrm{N}=26$, which is even. Median is the mean of 13 th and 14 th observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is $7 . \therefore$ Median=13thobservation+14thobservation $2=7+72=7$

The absolute values of the deviations from median, i.e. xi-M, are

xi-M	2	0	2	3	5	8
fi	8	6	2	2	2	6
fixi-M	16	0	4	6	10	48

$\sum \mathrm{i}=16 \mathrm{fi}=26$ and $\sum \mathrm{i}=16$ fixi-M=84 M.D. $(\mathrm{M})=1 \mathrm{~N} \sum \mathrm{i}=16$ fixi $-\mathrm{M}=126 \times 84=3.23$ Therefore, the mean deviation about the median for the given data is 3.23 .
Q.11. Find the mean deviation about the median for the data

xi	15	21	27	30	35
fi	3	5	6	7	8

5.1

Solution: The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

xi	fi	c.f.
15	3	3
21	5	8
27	6	14
30	7	21
35	8	29

Here, $\mathrm{N}=29$, which is odd. \therefore Median $=29+12$ th observation $=15$ th observation This observation lies in the cumulative frequency 21 , for which the corresponding observation is $30 . \therefore$ Median=30

The absolute values of the deviations from median, i.e. xi-M, are

xi-M	15	9	3	0	5
fi	3	5	6	7	8
fixi-M	45	45	18	0	40

$\sum \mathrm{i}=15 \mathrm{fi}=29$ and $\sum \mathrm{i}=15$ fixi-M=184 \therefore M.D. $(\mathrm{M})=1 \mathrm{~N} \sum \mathrm{i}=15$ fixi-M=129×184=5.1 Therefore, the mean deviation about the median for the given data is 5.1 .
Q.12. Find the mean deviation about the mean for the data.

Income per day	Number of persons
$0-100$	4
$100-200$	8
$200-300$	9
$300-400$	10
$400-500$	7
$500-600$	5
$600-700$	4
$700-800$	3

157.92

Solution: The following table is formed.

Income per day	Number of person fi	Mid-point xi	
0-100	4	50	
100-200	8	150	
200-300	9	250	
300-400	10	350	
400-500	7	450	
500-600	5	550	
600-700	4	650	
700-800	3	750	
	50		

Here, $\mathrm{N}=\sum \mathrm{i}=18 \mathrm{fi}=50, \sum \mathrm{i}=18$ fixi $=17900 \therefore \mathrm{x}^{-}=1 \mathrm{~N} \sum \mathrm{i}=18$ fixi $=150 \times 17900=358$ M.D. $\left(\mathrm{x}^{-}\right)=1 \mathrm{~N} \sum \mathrm{i}=1$ sfixi $-\mathrm{x}^{-}=150 \times 7896=157.92$ Therefore, the mean deviation about the median for the given data is 157.92 .

Exercise 15.2

Q.1. Find the mean and variance for each of the data
$6,7,10,12,13,4,8,12$
Solution: $\quad 6,7,10,12,13,4,8,12$
Mean, $\mathrm{x}^{-}=\sum \mathrm{i}=18 \mathrm{xin}=6+7+10+12+13+4+8+128=728=9$
The following table for the above data with the deviation and variance is obtained.

xi	(xi-x ${ }^{-}$)	(xi-x ${ }^{-}{ }^{2}$
6	-3	9
7	-2	4
10	-1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

Varianceo $2=\ln \sum \mathrm{i}=18 x i-\mathrm{x}^{-} 2=18 \times 74=9.25$
Q.2. The diameters of circles (in mm) drawn in a design are given below:

Diameters	$33-36$	$37-40$	$41-44$	$45-48$	$49-52$
No. of circles	15	17	21	22	25

Calculate the standard deviation and mean diameter of the circle.
Solution: The given data is not having continuous class-intervals. To make the class-intervals continuous we will subtract 0.5 from lower limit of each class interval and add 0.5 to upper limit of each class intervals.

Class	Frequency fi	Mid- point xi	yi=xi-42.54	yi2	fiyi	fiyi2
$32.5-36.5$	15	34.5	-2	4	-30	60
$36.5-40.5$	17	38.5	-1	1	-17	17
$40.5-44.5$	21	42.5	0	0	0	0
$44.5-48.5$	22	46.5	1	1	22	22
$48.5-52.5$	25	50.5	2	4	50	100
	100				25	199

Here, $\mathrm{N}=100, \mathrm{~h}=4$. Let the assumed mean, A , be 42.5 . Mean, $\mathrm{x}^{-}=\mathrm{A}+\sum \mathrm{i}=15$ fiyiN $\times \mathrm{h}=42.5+25100 \times 4=43.5$
Variance $2=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=15$ fiyi2- $\sum \mathrm{i}=15$ fiyi 2
$=1610000100 \times 199-(25) 2$
$=1610000[19900-625]=1610000 \times 19275=30.84 \therefore$ Standard deviation $(\sigma)=5.55$
Q.3. Find the mean and variance for the data.

First n natural numbers
Solution: \quad The mean of first n natural numbers is calculated as follows.
Mean=Sum of all observationsNumber of observations
\therefore Mean $=n(n+1) 2 n=n+12$
Variance $2=\ln \sum \mathrm{i}=1$ nxi- ${ }^{-} 2$
$=\ln \sum \mathrm{i}=\operatorname{lnxi}-\mathrm{n}+122$
$=1 \mathrm{n} \sum \mathrm{i}=1 \mathrm{nxi} 2-\ln \sum \mathrm{i}=\ln 2 \mathrm{n}+12 \mathrm{xi}+\ln \sum \mathrm{i}=1 \mathrm{nn}+122=\operatorname{lnn}(\mathrm{n}+1)(2 \mathrm{n}+1) 6-\mathrm{n}+\operatorname{lnn}(\mathrm{n}+1) 2+(\mathrm{n}+1) 24 \mathrm{n} \times \mathrm{n}=(\mathrm{n}+1)(2 \mathrm{n}+1) 6-(\mathrm{n}+1) 22+(\mathrm{n}+1) 24=(\mathrm{n}+1)(2 \mathrm{n}+1) 6-(\mathrm{n}+1) 24$ $=(\mathrm{n}+1) 4 \mathrm{n}+2-3 \mathrm{n}-312=(\mathrm{n}+1)(\mathrm{n}-1) 12=\mathrm{n} 2-112$.
Q.4. Find the mean and variance for the data

First 10 multiples of 3

Mathematics Textbook for Class 11
Solution: \quad The first 10 multiples of 3 are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $\mathrm{n}=10$ Mean, $\mathrm{x}^{-}=\sum \mathrm{i}=110$ xi1 $0=16510=16.5$
The following table for the variance is obtained as per the given data.

xi	$\mathrm{xi}-\mathrm{x}^{-}$	$\mathrm{xi-x}{ }^{-} 2$
3	-13.5	182.25
6	-10.5	110.25
9	-7.5	56.25
12	-4.5	20.25
15	-1.5	2.25
21	4.5	20.25
24	7.5	56.25
27	10.5	110.25
30	13.5	182.25
		742.5

Variance $\sigma 2=\ln \sum \mathrm{i}=110 \times \mathrm{xi}-\mathrm{x}^{-} 2=110 \times 742.5=74.25$
Q.5. Find the mean and variance for the data

xi	6	10	14	18	24	28	30
fi	2	4	7	12	8	4	3

Solution:
The given data in tabular form is as follows.

xi	fi	fixi	xi-x	xi-x-2	fixi-x-2
6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	8	192	5	25	200
28	4	112	9	81	324
30	3	90	11	121	363
	40	760			1736

Here, $\mathrm{N}=40$, $\sum \mathrm{i}=17$ fixi $=760 \therefore$ Mean $\mathrm{x}^{-}=\sum \mathrm{i}=17$ fixiN $=76040=19$ Variance $=\sigma 2=1 \mathrm{~N} \sum \mathrm{i}=17$ fixi $-\mathrm{x}^{-} 2=140 \times 1736=43.4$
Q.6. Find the mean and variance for the given data

xi	92	93	97	98	102	104	109
fi	3	2	3	2	6	3	3

Solution:
The deviations and variances is obtained in tabular form for the given data as follows.

xi	fi	fixi	xi-x	xi-x ${ }^{-} 2$	fixi-x ${ }^{-}$
92	3	276	-8	64	192
93	2	186	-7	49	98
97	3	291	-3	9	27
98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243
	22	2200			640

Here, $\mathrm{N}=22$, $\sum \mathrm{i}=17$ fixi $=2200 \therefore \mathrm{x}^{-}=1 \mathrm{~N} \sum \mathrm{i}=17$ fixi $=122 \times 2200=100$ Variance $\sigma 2=1 \mathrm{~N} \sum \mathrm{i}=17$ fixi $-\mathrm{x}^{-} 2=122 \times 640=29.09$ Therefore, variance for the given data is 29.09 .
Q.7. Find the mean and standard deviation using short-cut method.

xi	60	61	62	63	64	65	66	67	68
fi	2	1	12	29	25	12	10	4	5

Solution: The data is obtained in tabular form as follows.

xi	fi	yi=xi-Ah=xi-641	yi2	fiyi	fiyi2
60	2	-4	16	-8	32
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	220	16	20	80
	100			0	286

Let assumed mean $\mathrm{A}=64$, $\mathrm{h}=$ width $=61-60=1$ and $\mathrm{N}=\sum \mathrm{i}=19 \mathrm{fi}=100$ Therefore, Mean $\mathrm{x}^{-}=\mathrm{A}+\sum \mathrm{i}=19$ fiyiN $\times \mathrm{h}=64+0100 \times 1=64+0=64$
Variance, $\sigma 2=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=19$ fiyi2- $\sum \mathrm{i}=19$ fiyi2
$=11002[100 \times 286-0]$
$=2.86 \therefore$ Standard deviation $(\sigma)=2.86=1.691$
Q.8. Find the mean and variance for the following frequency distribution.

Classes	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$	$180-210$
Frequencies	2	3	5	10	3	5	2

Solution:
Given data in tabular form:

| Class | Frequency fi | Mid-
 point xi | yi=xi-Ah=xi-10530 | yi2 | fiyi | fiyi2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0-30$ | 2 | 15 | -3 | 9 | -6 | 18 |
| $30-60$ | 3 | 45 | -2 | 4 | -6 | 12 |
| $60-90$ | 5 | 75 | -1 | 1 | -5 | 5 |
| $90-120$ | 10 | 105 | 0 | 0 | 0 | 0 |
| $120-150$ | 3 | 135 | 1 | 1 | 3 | 3 |
| $150-180$ | 5 | 165 | 2 | 4 | 10 | 20 |
| $180-210$ | 2 | 195 | 3 | 9 | 6 | 18 |
| | 30 | | | | 2 | 76 |

Let assumed meanA $=105, \mathrm{~h}=$ width of class-intervals $=30$ and $\mathrm{N}=\sum \mathrm{i}=17 \mathrm{fi}=30$ Mean, $\mathrm{x}^{-}=\mathrm{A}+\sum \mathrm{i}=17$ fiyiN $\times \mathrm{h}=105+230 \times 30=105+2=107$

Variance $2=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=17$ fiyi2- $\sum \mathrm{i}=17$ fiyi2
$=(30) 2(30) 230 \times 76-(2) 2$
$=2280-4=2276$ Therefore, the variance for the given data is 2276 .
Q.9. Find the mean and variance for the following frequency distribution.

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequencies	5	8	15	16	6

Solution:
Given data in tabular form:

Class	Frequency fi	Mid-point xi	yi=xi-Ah=xi-2510	yi2	fiyi	fiyi2
$0-10$	5	5	-2	4	-10	20
$10-20$	8	15	-1	1	-8	8
$20-30$	15	25	0	0	0	0
$30-40$	16	35	1	1	16	16
$40-50$	6	45	2	4	12	24
	50				10	68

Let assumed mean $\mathrm{A}=25, \mathrm{~h}=$ width of class-intervals $=10$ and $\mathrm{N}=\sum \mathrm{i}=15 \mathrm{fi}=50$
Mean, $\mathrm{x}^{-}=\mathrm{A}+\sum \mathrm{i}=15$ fiyiN $\times \mathrm{h}=25+1050 \times 10=25+2=27$
Varianceo $2=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=15$ fiyi2- $\sum \mathrm{i}=15$ fiyi 2
$=(10) 2(50) 250 \times 68-(10) 2$
$=125[3400-100]=330025=132$ Therefore, the variance for the given data is 132 .
Q.10. Find the mean, variance and standard deviation using short-cut method

Height in cms	$70-75$	$75-80$	$80-85$	$85-90$	$90-95$	$95-100$	$100-105$	$105-110$	$110-115$
No. of children	3	4	7	7	15	9	6	6	3

Solution:
Given data in tabular form:

| Class | Frequency fi | Mid-
 point xi | yi=xi-92.55 | yi2 | fiyi | fiyi2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $70-75$ | 3 | 72.5 | -4 | 16 | -12 | 48 |
| $75-80$ | 4 | 77.5 | -3 | 9 | -12 | 36 |
| $80-85$ | 7 | 82.5 | -2 | 4 | -14 | 28 |
| $85-90$ | 7 | 87.5 | -1 | 1 | -7 | 7 |
| $90-95$ | 15 | 92.5 | 0 | 0 | 0 | 0 |
| $95-100$ | 9 | 97.5 | 1 | 1 | 9 | 9 |
| $100-105$ | 6 | 102.5 | 2 | 4 | 12 | 24 |
| $105-110$ | 6 | 107.5 | 3 | 9 | 18 | 54 |
| $110-115$ | 3 | 112.5 | 4 | 16 | 12 | 48 |
| | 60 | | | | 6 | 254 |

Let assumed mean $\mathrm{A}=92.5, \mathrm{~h}=$ width of class intervals $=5$ and $\mathrm{N}=\sum \mathrm{i}=19 \mathrm{fi}=60$
Mean, $\mathrm{x}=\mathrm{A}+\sum \mathrm{i}=19$ fiyiN $\times \mathrm{h}=92.5+660 \times 5=92.5+0.5=93$
Varianceo2 $=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=19$ fiyi2 $-\sum \mathrm{i}=19 f \mathrm{fi}, \mathrm{yi} 2=(5) 2(60) 260 \times 254-(6) 2$
$=253600(15204)=105.52$
\therefore Standard deviation $(\sigma)=105.52=10.27$

Exercise 15.3
Q.1. From the data given below state which group is more variable, A or B?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Solution:
Firstly, the standard deviation of group A is calculated as follows.

Marks	Group A fi	Mid-point xi	$y \mathrm{i}=\mathrm{xi}-\mathrm{Ah}=\mathrm{xi}-4510$	yi2	fiyi	fiyi2
10-20	9	15	-3	9	-27	81
20-30	17	25	-2	4	-34	68
30-40	32	35	-1	1	-32	32
40-50	33	45	0	0	0	0
50-60	40	55	1	1	40	40
60-70	10	65	2	4	20	40
70-80	9	75	3	9	27	81
	150				-6	342

Here, $\mathrm{h}=10, \mathrm{~N}=150, \mathrm{~A}=45$ Mean $=\mathrm{A}+\sum \mathrm{i}=1$ nfiyiN $\times \mathrm{h}=45+(-6) 150 \times 10=45-0.4=44.6$
Variance of group A,
$\sigma 12=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=17$ fiyi2- $\sum \mathrm{i}=17$ fiyi2
$=10022500150 \times 342-(-6) 2$
$=1225(51264)=227.84 \therefore$ Standard deviation $\sigma 1=227.84=15.09$
The standard deviation of group B is calculated as follows.

Marks	Group B fi	Mid-point xi	yi=xi-4510	yi2	fiyi	fiyi2
$10-20$	10	15	-3	9	-30	90
$20-30$	20	25	-2	4	-40	80
$30-40$	30	35	-1	1	-30	30
$40-50$	25	45	0	0	0	0
$50-60$	43	55	1	1	43	43
$60-70$	15	65	2	4	30	60
$70-80$	7	75	3	9	21	63
	150				-6	366

Here, $\mathrm{A}=45, \mathrm{~N}=150, \mathrm{~h}=10$
Mean, $=\mathrm{A}+\sum \mathrm{i}=17$ fiyiN $\times \mathrm{h}=45+(-6) 150 \times 10=45-0.4=44.6$
Variance of group B,
$\sigma 22=\mathrm{h} 2 \mathrm{~N} 2 \mathrm{~N} \sum \mathrm{i}=17$ fiyi2- $\sum \mathrm{i}=17$ fiyi2
$=10022500150 \times 366-(-6) 2$
$=1225[54864]=243.84 \therefore$ Standard deviation $\sigma 2=243.84=15.61$ Since the mean of both the groups is same, the group with greater standard deviation will be more variable. Thus, group B has more variability in the marks.
Q.2. From the prices of shares X and Y below, find out which is more stable in value:

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Solution: The group having more Coefficient of Variation will be more variable.
Coefficient of VariationC.V. $=\sigma x^{-} \times 100$
Where, $\sigma=$ Standard Deviationx ${ }^{-}=$Mean
The prices of the share X are $35,54,52,53,56,58,52,50,51,49$ Here, the number of observations, $\mathrm{N}=10 \therefore \mathrm{Mean}, \mathrm{x}^{-}=1 \mathrm{~N} \sum \mathrm{i}=110 \mathrm{xi}=110 \times 510=51$
The following table is obtained corresponding to share X .

xi	xi-x	xi-x-2
35	-16	256
54	3	9
52	1	1
53	2	4
56	5	25
58	7	49
52	1	1
50	-1	1
51	-2	0
49		4
		350

Variance $\sigma 12=1 N \sum i=110\left(x i-x^{-}\right) 2=110 \times 350=35 \therefore$ Standard deviation $\sigma 1=35=5.91$ C.V. $($ Shares $X)=\sigma 1 \times 100=5.9151 \times 100=11.58$
The prices of share Y are
$108,107,105,105,106,107,104,103,104,101$
\therefore Mean, $\mathrm{y}^{-}=1 \mathrm{~N} \sum \mathrm{i}=110 \mathrm{yi}=110 \times 1050=105$
The following table is obtained corresponding to share Y.

yi	yi- \mathbf{y}^{-}	yi-y ${ }^{-1}$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-4	1
101		16
		40

Variance $\sigma 22=1 \mathrm{~N} \sum \mathrm{i}=110 \mathrm{yi}-\mathrm{y}^{-} 2=110 \times 40=4 \therefore$ Standard deviation $\sigma 2=4=2 \therefore$ C.V. (Shares Y) $=\sigma 2 \mathrm{y} \times 100=2105 \times 100=1.9=11.58 \mathrm{C}$.V. of prices of share X is greater than the C.V. of prices of share Y Thus, the prices of share Y are more stable than the prices of share X.
Q.3. An analysis of monthly wages paid to workers in two firms A and B , belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	₹5253	₹5253
Variance of the distribution of wages	100	121

Which firm A or B pays larger amount as monthly wages?
Solution: \quad Monthly wages of firm $\mathrm{A}=$ ₹ 5253 .
Number of wage earners in firm $\mathrm{A}=586$.
\therefore Total amount paid=₹ $5253 \times 586=$ ₹ 3078258 . Monthly wages of firm B=₹ 5253 . Number of wage earners in firm B=648. \therefore Total amount paid=₹ $5253 \times 648=$ ₹ 3403944 . Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.
Q.4. An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	Rs 5253	Rs 5253
Variance of the distribution of wages	100	121

Which firm, A or B, shows greater variability in individual wages?
Solution: Given:

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	₹5253	₹5253
Variance of the distribution of wages	100	121

Variance of the distribution of wages in firm A $\sigma 12=100 \therefore$ Standard deviation of the distribution of wages in firm, A $\sigma 1=$ Variance $=100=10$ Variance of the distribution of wages in firm $B \sigma 22=121 \therefore$ Standard deviation of the distribution of wages in firm, $B \sigma 2=$ Variance $=121=11$ The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm
with greater standard deviation will have more variability. Thus, firm B has greater variability in the individual wages.
Q.5. The following is the record of goals scored by team A in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?
Solution: The mean and the standard deviation of goals scored by team A are calculated as follows.

No. of goals scored xi	No. of matches fi	fixi	xi2	fixi2
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean $=\sum \mathrm{i}=15$ fixi $\sum \mathrm{i}=15 \mathrm{fi}=5025=2$ Thus, the mean of both the teams is same.

$$
\sigma=1 \mathrm{NN} \sum \mathrm{fixi} 2-\sum \text { fixi } 2
$$

$=12525 \times 130-(50) 2$
$=125750=125 \times 27.38=1.09$ The standard deviation of team B is 1.25 goals. The average number of goals scored by both the teams is same i.e., 2 . Therefore, the team with lower standard deviation will be more consistent. Thus, team A is more consistent than team B.
Q.6. The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
$\sum \mathrm{i}=150 \mathrm{xi}=212, \sum \mathrm{i}=150 \times \mathrm{i} 2=902.8, \sum \mathrm{i}=150 \mathrm{yi}=261, \sum \mathrm{i}=150 \mathrm{yi} 2=1457.6$
Which is more varying, the length or weight?
Solution: The sum and sum of squares corresponding to length x (in cm) of 50 plant products are given below:
$\sum \mathrm{i}=150 x \mathrm{i}=212, \Sigma \mathrm{i}=150 x i 2=902.8$
Here, $\mathrm{N}=50 \therefore$ Mean, $\mathrm{x}^{-}=\sum \mathrm{i}=150 \times \mathrm{x}=21250=4.24$
Variance $\sigma 12=1 \mathrm{~N} \sum \mathrm{i}=150 \times \mathrm{xi}-\mathrm{x}^{-} 2$
$=150 \sum \mathrm{i}=150 \times \mathrm{i}-4.242$
$=150 \sum \mathrm{i}=150 \times \mathrm{i} 2-8.48 \mathrm{xi}+17.97=150 \sum \mathrm{i}=150 \times \mathrm{xi} 2-8.48 \sum \mathrm{i}=150 \mathrm{xi}+17.97 \times 50=150[902.8-8.48 \times(212)+898.5]=150[1801.3-1797.76]=150 \times 3.54=0.07 \therefore$ Standard deviation, $\sigma 1($ Length $)=0.07=0.26 \therefore$ C.V. (Length) $=$ StandarddeviationMean $\times 100=0.264 .24 \times 100=6.13$

The sum and sum of squares corresponding to weight y (in gm) of 50 plant products are given below:
$\sum \mathrm{i}=150 \mathrm{yi}=261, \sum \mathrm{i}=150 \mathrm{yi} 2=1457.6$
Mean, $\mathrm{y}^{-}=1 \mathrm{~N} \sum \mathrm{i}=150 \mathrm{yi}=150 \times 261=5.22$
Variance $\sigma 22=1 \mathrm{~N} \sum \mathrm{i}=150 \mathrm{yi}^{-} \mathrm{y}^{-} 2$
$=150 \sum \mathrm{i}=150 y \mathrm{yi}-5.222$
$=150 \sum \mathrm{i}=150 \mathrm{yi} 2-10.44 \mathrm{yi}+27.24=150 \sum \mathrm{i}=150 \mathrm{yi} 2-10.44 \sum \mathrm{i}=150 \mathrm{yi}+27.24 \times 50=150[1457.6-10.44 \times(261)+1362]=150[2819.6-2724.84]=150 \times 94.76=1.89 . \therefore$ Standard deviation, $\sigma 2($ Weight $)=1.89=1.37 \therefore$ C.V. (Weight $)=$ StandarddeviationMean $\times 100=1.375 .22 \times 100=26.24$ Thus, C.V. of weights is greater than the $C . V$. of lengths. Therefore, weights vary more than the lengths.

