NEET Important Questions with Solutions from Current Electricity

Q.1. The length of a wire of a potentiometer is 100 cm and the emf of its standard cell is E volt. It is employed to measure the emf of a battery whose internal resistance is 0.5Ω. If the balance point is obtained at $l=30 \mathrm{~cm}$ from the positive end, the emf of the battery is
A) $\frac{30 E}{(100)}$
B) $\frac{30 E}{100-0.5}$
C) $\quad \frac{30 E}{100.5}$
D) $\frac{30(E-0.5 i)}{100}$
where, i is the current in the potentiometer.

Answer:

$$
\frac{30 E}{(100)}
$$

Solution: As in the primary circuit, driver cell is directly connected to the potentiometer. So,

$$
x=\frac{V_{w}}{L_{w}}=\frac{E}{1}
$$

where, $V_{\mathrm{w}}, L_{\mathrm{w}}$ are the potential difference across a wire and the length of wire, respectively.
We know,

$$
\begin{aligned}
& E_{\text {unknown }}=x \times l \\
& E_{\text {unknown }}=\frac{E}{1} \times(0.3)=\frac{30 E}{100}
\end{aligned}
$$

Q.2. The following figure shows cross-sections through three long conductors of the same length and material, with a square crosssection of edge lengths as shown. Conductor B will fit snugly within conductor A, and conductor C will fit snugly within conductor B. Relationship between their end to end resistance is

A) $\quad R_{A}=R_{B}=R_{C}$
B) $\quad R_{A}>R_{B}>R_{C}$
C) $\quad R_{A}<R_{B}<R$
D) information is not sufficient

Answer: $\quad R_{A}=R_{B}=R_{C}$

Solution:

The resistance of wire given as,
$R=\frac{\rho l}{A}$
Resistance is inversely proportional to the area of the wire,
$\Rightarrow R \propto \frac{1}{A}$
Now comparing their area of the cross-section. For conductor A, the area is,
$S_{A}=(\sqrt{3 a})^{2}-(\sqrt{2 a})^{2}=a^{2}$
For conductor B, the area is,
$S_{B}=(\sqrt{2 a})^{2}-a^{2}=a^{2}$
For conductor C, the area is,
$S_{C}=a^{2}$
The cross-sectional area of all three conductors is the same.
The material of all conductors is the same, then resistivity will be also the same. The length of the conductors given is the same. Then,
$R=\rho \frac{l}{A}$
The resistance of each conductor will be the same. Hence,
$R_{A}=R_{B}=R_{C}$
Q.3. The equivalent resistance between points A and B is:

A) $\frac{65}{2} \Omega$
B) $\frac{45}{2} \Omega$
C) $\frac{5}{2} \Omega$
D) $\frac{91}{2} \Omega$

Answer:

```
45
```

Solution: The given diagram is redrawn as below with additional labels.

It can be redrawn as below.

Hence, the resistance $R_{C E}$ between $C E$ can be calculated by using parallel combination of resistances after combining the resistances in series in each branch.

$$
\begin{aligned}
& \frac{1}{R_{C E}}=\frac{1}{25}+\frac{1}{50}+\frac{1}{50}=\frac{2}{25} \\
& \Rightarrow R_{C E}=\frac{25}{2} \Omega
\end{aligned}
$$

Now the resistance between $A B$ can be considered to be resistances in series,

$$
R_{A B}=2+\frac{25}{2}+8=\frac{45}{2} \Omega
$$

Q.4. Figure shows a potentiometer. Length of the potentiometer wire $A B$ is 100 cm and its resistance is 100Ω. EMF of the battery E is 2 V . A resistance R of 50Ω draws current from the potentiometer. What is the voltage across R when the sliding contact C is at the mid-point of $A B$?

A) $\quad 2 / 3 \mathrm{~V}$
B) 1 V
C) $4 / 3 V$
D) $3 / 2 \mathrm{~V}$

Answer: $\quad 2 / 3 \mathrm{~V}$

Solution: \quad Given, $E=2 \mathrm{~V}, R_{A B}=100 \Omega$
$l_{A B}=100 \mathrm{cmand} R=50 \Omega$
Circuit according to the question,

$A C=C B=\frac{l_{A B}}{2}=50 \mathrm{~cm}$
$R_{A B}=100 \Omega$
$R_{A C}=R_{C B}=\frac{R_{A B}}{2}=\frac{100}{2}$
$\therefore R_{A C}=R_{C B}=50 \Omega$
\therefore Net resistance of the circuit, $R_{\text {net }}=R_{C B}+\frac{R \cdot R_{A C}}{R+R_{A C}}$
$=50+\frac{50 \times 50}{50+50}=50+25$
$R_{\text {net }}=75 \Omega$
\therefore Current from the battery, $I=\frac{E}{R_{\text {net }}}=\frac{2}{75} \mathrm{~A}$
Using KVL in mesh 1
$E-V_{A C}-V_{C B}=0$
$\Rightarrow V_{A C}+V_{C B}=2$
$\Rightarrow V_{A C}+I R_{C B}=2$
$\Rightarrow V_{A C}=2-\frac{2}{75} \times 50 \Rightarrow V_{A C}=2-\frac{4}{3}=\frac{6-4}{3}=\frac{2}{3} \mathrm{~V}$
Q.5. Electric resistance is defined as the ratio of voltage to current. Its dimensional formulae is given by
A) $\quad \mathrm{M}^{2} \mathrm{LT}^{-3} \mathrm{~A}^{-2}$
B) $\quad \mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$
C) $\quad \mathrm{ML}^{-3} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$
D) $\quad \mathrm{M}^{-2} \mathrm{~L}^{-2} \mathrm{~T}^{2} \mathrm{~A}^{-1}$
E) $\quad \mathrm{ML}^{-3} \mathrm{~T}^{-2} \mathrm{~A}^{-2}$

Answer: $\quad \mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$

Solution: \quad Electric resistance R in terms of voltage V and current I,
$R=\frac{V}{I} \ldots(1)$
Also, heat, $H=\frac{V^{2} t}{R}$
From the first and second equation, $R=\frac{H}{I^{2} t}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~A}^{2} \mathrm{~T}}$
$=\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}$
Q.6. A battery of internal resistance 2Ω is connected to a variable resistor whose value can vary from 4Ω to 10Ω. The resistance is initially set at 4Ω. If the resistance is now increased then
A) power consumed by it will decrease.
B) power consumed by it will increase.
C) power consumed by it may increase or may decrease.
D) power consumed will first increase then decrease.

Answer: power consumed by it will decrease.

Solution:

Current in circuit is,

$$
i=\frac{\varepsilon}{r+R}
$$

Power output is,

$$
\begin{aligned}
& P=i^{2} R \\
& \Rightarrow P=\left(\frac{\varepsilon}{r+R}\right)^{2} R
\end{aligned}
$$

Condition for maximum power supply,

$$
\begin{aligned}
& \frac{d P}{d R}=0 \\
& \Rightarrow \frac{d}{d R}\left[\left(\frac{\varepsilon}{r+R}\right)^{2} R\right]=0 \\
& \Rightarrow \frac{\varepsilon^{2}}{(r+R)^{3}}(R+r-2 R)=0 \\
& \Rightarrow R=r
\end{aligned}
$$

Graph between power and resistance

Power maximum when $r=R$
So, power consumed by it will decrease for $R>r$.
Q.7. In the circuit shown in the figure potential difference between points A and B is 16 V the current passing through 2Ω resistance will be

A) 25 A
B) $\quad 3.5 \mathrm{~A}$
C) $\quad 4.0 \mathrm{~A}$
D) zero

Answer: $\quad 3.5 \mathrm{~A}$

Solution: Let the current i_{1} and i_{2} coming towards junction p then the current leaving out of the junction will be $i_{1}+i_{2}$.
So, along path $A p q r s B$,

$$
\begin{equation*}
4 i_{1}+2\left(i_{1}+i_{2}\right)-3+4 i_{1}=16 \mathrm{~V} \tag{i}
\end{equation*}
$$

Using Kirchhoffs' second law in the closed loop pqrs, we have,
$9-i_{2}-2\left(i_{1}+i_{2}\right)=0$
Solving equations (i) and (ii), we get,
$i_{1}=1.5 \mathrm{~A}$ and $\mathrm{i}_{2}=2 \mathrm{~A}$
\therefore Current through 2Ω resistor $=2+1.5=3.5 \mathrm{~A}$.

Q.8. In the given circuit diagram, current in 2Ω resistor is 2 A , then the current in 6Ω resistor will be

A) $\quad \frac{3}{2} \mathrm{~A}$
B) $\quad \frac{2}{3} \mathrm{~A}$
C) $\quad \frac{1}{3} \mathrm{~A}$
D) $\quad 2 \mathrm{~A}$

Answer: $\quad \frac{2}{3} \mathrm{~A}$

Solution:

As in the above branch potential across $P Q$ is 6 V and equivalent resistance is 3Ω, therefore current in this branch should be 2 A . Therefore voltage across 6Ω is 4 V and hence current in it is $\frac{2}{3} \mathrm{~A}$.
Q.9. Two cells each of emf E and internal resistance r_{1} and r_{2} respectively are connected in series with an external resistance R. The potential difference between the terminals of the first cell will be zero when R is equal to
A) $\frac{r_{1}+r_{2}}{2}$
B) $\sqrt{r_{1}^{2}-r_{2}^{2}}$
C) $r_{1}-r_{2}$
D) $\quad \frac{r_{1} r_{2}}{r_{1}+r_{2}}$

Answer: $\quad r_{1}-r_{2}$

Solution: It is given that two cells each of emf E and internal resistance r_{1} and r_{2} respectively are connected in series with an external resistance R.

The total current through the circuit would be,

$$
I=\frac{E+E}{R+r_{1}+r_{2}}=\frac{2 E}{R+r_{1}+r_{2}}
$$

The potential across the terminal of the first cell,
$V_{1}=E-I \times r_{1}$
This will be zero when,
$E=I r_{1}=\frac{2 E}{R+r_{1}+r_{2}} \times r_{1}$
Simplifying and rearranging the equation,

$$
\begin{aligned}
& R+r_{1}+r_{2}=2 r_{1} \\
& \Rightarrow R=r_{1}-r_{2}
\end{aligned}
$$

Q.10. 50 V battery is supplying a current of 10 amp when connected to a resistor. If the efficiency of battery at this current is 25%. Then internal resistance of the battery is:
A)
2.5Ω
B) 3.75Ω
C) 1.25Ω
D) 5Ω

Answer: 3.75Ω
Solution:

Using Kirchoff's voltage law in the loop

$$
50=10[R+r]
$$

$$
\begin{equation*}
R+r=5 \Omega \tag{1}
\end{equation*}
$$

Efficiency of battery

$$
\begin{align*}
& \eta=\frac{P_{\text {out }}}{P_{\text {total }}}=\frac{i^{2} R}{i^{2}(R+r)} \\
& \Rightarrow \eta=\frac{R}{R+r} \\
& \Rightarrow 0.25=\frac{R}{R+r} \\
& \Rightarrow R+r=4 R \\
& \Rightarrow r=3 R \ldots(2) \tag{2}
\end{align*}
$$

From equations (1) \& (2), we get

$$
R=\frac{5}{4}=1.25 \Omega, \text { and } r=3.75 \Omega
$$

Q.11. Three resistors $1 \Omega, 2 \Omega$ and 3Ω are connected to form a triangle. Across 3Ω resistor a 3 V battery is connected. The current through 3Ω resistor is
A) $\quad 0.75 \mathrm{~A}$
B) 1 A
C) 2 A
D) $\quad 1.5 \mathrm{~A}$

Answer: 1 A

Here, two resistance of 1Ω and 2Ω are in series, which is equivalent to 3Ω which is in parallel with 3Ω resistance. Therefore, the effective resistance is,
$R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \frac{3 \times 3}{3+3}=\frac{3}{2} \Omega$.
\therefore Current supplied by the battery in the circuit,
$I=\frac{3}{\left(\frac{3}{2}\right)}=2 \mathrm{~A}$.
As both branches has equal resistance of 3Ω each, so current in each of them will be equal to $\frac{I}{2}$
\therefore Current in 3Ω resistor $=\frac{I}{2}=1 \mathrm{~A}$.
Q.12. An ideal ammeter (zero resistance) and an ideal voltmeter (infinite resistance) are connected as shown in the figure. The ammeter and the voltmeter readings are

A) $\quad 6.25 \mathrm{~A}, 3.75 \mathrm{~V}$
B) $\quad 3.00 \mathrm{~A}, 5 \mathrm{~V}$
C) $\quad 3.00 \mathrm{~A}, 3.75 \mathrm{~V}$
D) $\quad 6.25 \mathrm{~A}, 6.25 \mathrm{~V}$

Answer: $\quad 3.00 \mathrm{~A}, 5 \mathrm{~V}$

Solution: \quad As 5Ω and 15Ω resistance are in parallel, so the equivalent resistance r of this combination is:
$r=\frac{5 \times 15}{5+15} \Omega$
$r=3.75 \Omega$
Resistance r and 1.25Ω are in series, so the equivalent resistance R of the circuit is:
$R=r+1.25$
$R=(3.75+1.25) \Omega$
$R=5 \Omega$
The current I from the battery to the circuit is:
$I=\frac{V}{R} \mathrm{~A}=\frac{20}{5} \mathrm{~A}=4 \mathrm{~A}$
As 5Ω and 15Ω are in parallel to each other, the current through any of the two resistance is inversely proportional to its resistance.
Hence, the current through 5Ω is $\frac{15}{20} \times 4 \mathrm{~A}=3 \mathrm{~A}$
Voltmeter reading $=$ Potential drop across 1.25Ω
$=I \times 1.25=4 \times 1.25 \mathrm{~V}=5 \mathrm{~V}$
Q.13. Two resistances R_{1} and R_{2} are made of different materials. The temperature coefficient of the material of R_{1} is α and of the material of R_{2} is $-\beta$. The resistance of the series combination of R_{1} and R_{2} will not change with temperature, if $\frac{R_{1}}{R_{2}}$ equals,
A) $\frac{\alpha}{\beta}$
B) $\frac{\alpha+\beta}{\alpha-\beta}$
C) $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
D) $\frac{\beta}{\alpha}$

Answer: $\quad \frac{\beta}{\alpha}$

Solution: Using temperature resistance relation, for resistor R_{1},
$R_{1}^{\prime}=R_{1}[1+\alpha \Delta T]$
For resistor R_{2},
$R_{2}^{\prime}=R_{2}[1+(-\beta) \Delta T]$
We know that, when the resistance is connected in series, then the net resistance is equal to the total sum of all resistance. So, the total resistance is,
$R_{1}^{\prime}+R_{2}^{\prime}$
As the condition is given in the question if, $R_{1}^{\prime}+R_{2}^{\prime}=R_{1}+R_{2}$
Using (1) and (2) in (3), we get,
$R_{1}[1+\alpha \Delta T]+R_{2}[1-\beta \Delta T]=R_{1}+R_{2}$
$R_{1} \alpha=R_{2} \beta$
$\frac{R_{1}}{R_{2}}=\frac{\beta}{\alpha}$
Q.14. What will be current through the 200Ω resistor in the given circuit, a long time after the switch K is made on?

A) Zero
B) 100 mA
C) $\quad 10 \mathrm{~mA}$
D) 1 mA

Answer: $\quad 10 \mathrm{~mA}$

Solution:

In steady state, arm having capacitors does not flow current. So, we can neglect them.
\therefore The given circuit reduces to

$\therefore R_{\text {net }}=200+400=600 \Omega$
\therefore Current in circuit,

$$
\begin{aligned}
& I=\frac{V}{R}=\frac{6}{600}=0.01 \mathrm{~A} \\
& =10 \mathrm{~mA}
\end{aligned}
$$

Q.15. A cell of constant emf first connected to resistance R_{1} and then connected to resistance R_{2}. If power delivered in both cases is same then the internal resistance of the cell is:
A) $\sqrt{R_{1} R_{2}}$
B) $\sqrt{\frac{R_{1}}{R_{2}}}$
C) $\frac{R_{1}-R_{2}}{2}$
D) $\frac{R_{1}+R_{2}}{2}$

Answer: $\quad \sqrt{R_{1} R_{2}}$

Solution:

Power delivered in $1^{\text {st }}$ case $P_{1}=I_{1}{ }^{2} R_{1}$
Power delivered in $2^{\text {nd }}$ case $P_{2}=I_{2}{ }^{2} R_{2}$
According to question, Power delivered in both case will be same.

$$
\begin{aligned}
& \therefore I_{1}^{2} R_{1}=I_{2}^{2} R_{2} \\
& \therefore\left(\frac{E}{R_{1}+r}\right)^{2} R_{1}=\left(\frac{E}{R_{2}+r}\right)^{2} R_{2} \\
& \text { or } R_{2}^{2} R_{1}+R_{1} r^{2}+2 R_{1} R_{2} r=R_{1}^{2} R_{2}+R_{2} r^{2}+2 R_{1} R_{2} r \\
& \text { or }\left(R_{1}-R_{2}\right) r^{2}=\left(R_{1}-R_{2}\right) R_{1} R_{2} \\
& \therefore r^{2}=R_{1} R_{2} \Rightarrow r=\sqrt{R_{1} R_{2}}
\end{aligned}
$$

Q.16. A uniform wire of resistance R is stretched uniformly n times and then, cut to form five identical wires. These wires are arranged as shown in the figure. The effective resistance between A and B will be,

A) $\quad \frac{n R}{5}$.
B) $\frac{R}{5 n^{2}}$.
C) $\quad \frac{n^{2} R}{5}$.
D) $\quad \frac{n^{2} R}{2}$.

Answer:

$$
\frac{n^{2} R}{5} .
$$

Solution: We know that the resistance of the wire is given by,
$R=\frac{\rho L}{A}$
The volume of the wire is given by $V=L A$, and it is constant,
$L=$ length of the wire, $A=$ area of the wire.
If the length $L^{\prime}=n L$, then, the area will be $A^{\prime}=\frac{A}{n}$.
Hence, from the equation (1), the resistance of the wire becomes $R^{\prime}=\frac{\rho(n L)}{\left(\frac{A}{n}\right)}=\frac{n^{2} \rho L}{A}=n^{2} R$.
So, the resistance of each $\left(\frac{1}{5}\right)^{\text {th }}$ part is
$x=\frac{R^{\prime}}{5}=\frac{n^{2} R}{5}$,
where, x is the resistance of each part of the wire. Here, we can see that the circuit diagram is a balanced Wheatstone bridge. Hence, we can redraw it.

Since the circuit is balanced, the middle resistance is neglected.
The equivalent resistance is calculated by, $\frac{(2 x)(2 x)}{2 x+2 x}=x$
(because x and x resistances are in series and its equivalent is $x+x=2 x$).
And finally, $x=\frac{n^{2} R}{5}$.
Q.17. Two wires of resistance R_{1} and R_{2} have a temperature coefficient of resistance α_{1} and α_{2}, respectively. These are joined in series. The effective temperature coefficient of resistance is
A) $\frac{\alpha_{1}+\alpha_{2}}{2}$
B) $\sqrt{\alpha_{1} \alpha_{2}}$
C) $\frac{\alpha_{1} R_{1}+\alpha_{2} R_{2}}{R_{1}+R_{2}}$
D) $\frac{\sqrt{R_{1} R_{2} \alpha_{1} \alpha_{2}}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$

Answer: $\quad \frac{\alpha_{1} R_{1}+\alpha_{2} R_{2}}{R_{1}+R_{2}}$

Solution: Resistance depends on temperature then, the resistance of wire 1 is,

$$
\begin{equation*}
R_{1}^{\prime}=R_{1}\left[1+\alpha_{1}(\Delta T)\right] \tag{1}
\end{equation*}
$$

The resistance of wire 2 is,
$R_{2}^{\prime}=R_{2}\left[1+\alpha_{2}(\Delta T)\right]$
For series combination, net resistance is the sum of two resistance then,
$R_{e}=R_{1}^{\prime}+R_{2}^{\prime}=\left(R_{1}+R_{2}\right)\left[1+\alpha_{e f f}(\Delta T)\right]$
Using (1) and (2) in (3),
$R_{1}\left[1+\alpha_{1} \Delta T\right]+R_{2}\left[1+\alpha_{2} \Delta T\right]=\left(R_{1}+R_{2}\right)\left[1+\alpha_{e f f} \Delta T\right]$
$\left(R_{1} \alpha_{1}+R_{2} \alpha_{2}\right) \Delta T=\left(R_{1}+R_{2}\right) \alpha_{e f f}(\Delta T)$
$\alpha_{e f f}=\frac{R_{1} \alpha_{1}+R_{2} \alpha_{2}}{R_{1}+R_{2}}$
Q.18. Four resistors, $100 \Omega, 200 \Omega, 300 \Omega$ and 400Ω are connected to form four sides of a square. The resistors can be connected in any order. What is the maximum possible equivalent resistance across the diagonal of the square?
A) 210Ω
B) 240Ω
C) 300Ω
D) 250Ω

Answer: $\quad 250 \Omega$

Solution: For maximum equivalent resistance across the diagonal of the square, the given resistors connected as

Resistance of $P Q R$ arm, $R_{1}=300+200=500 \Omega$
Resistance of $P S R$ arm, $R_{2}=400+100 \Omega=500 \Omega$
The equivalent resistance between P and R.
$\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
$=\frac{1}{500}+\frac{1}{500}=\frac{1+1}{500}$
$\therefore \quad R_{\text {eq }}=\frac{500}{2}=250 \Omega$
Q.19. The specific resistance of a wire is ρ, its volume is $3 \mathrm{~m}^{3}$ and its resistance is 3Ω, then its length will be
A)
$\sqrt{\frac{1}{\rho}}$
B)

C) $\frac{1}{\rho} \sqrt{3}$
D) $\quad \rho \sqrt{\frac{1}{3}}$
E) $\sqrt{\frac{3}{\rho}}$

Answer: $\frac{3}{\sqrt{\bar{p}}}$

Solution: \quad For any conductor of length l and area of cross-section A, the volume V is

$$
\begin{aligned}
& V=A l \\
& \Rightarrow A=\frac{V}{l}
\end{aligned}
$$

Since the resistance R of the same conductor.
$R=\rho \frac{l}{A}, \rho=$ specific resistance
$\therefore R=\rho \frac{l}{\frac{V}{l}}=\rho \frac{l^{2}}{V} \Rightarrow l^{2}=\frac{R V}{\rho}$
Given $V=3 \mathrm{~m}^{3}, R=3 \Omega$, then
$\therefore l^{2}=\frac{9}{\rho}$
$\Rightarrow l=\frac{3}{\sqrt{\bar{\rho}}}$
Q.20. In the given network of four resistors, the equivalent resistance is,

A) 20Ω
B) 5.4Ω
C) 12Ω
D) 4.5Ω

Answer: 4.5Ω

By point-potential method, we know that two points having same potential can be taken as a single point.
So, we now redraw the circuit and name the points. We have to find the equivalent resistance between A and B.
In the last branch, both the points are at the same potential. Hence, replace the branch with a single point C and redraw the circuit as shown below.

Now, we can see that 7Ω and 3Ω are in parallel between A and C and 6Ω and 4Ω are in parallel between C and B.

The equivalent resistance between A and B is equal to the series equivalent of resistances between A and C and B and C.

Now, parallel equivalent of two resistances R_{1} and R_{2} is given by, $\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.
Series equivalent is given by $R_{1}+R_{2}$.
Thus, equivalent resistance between A and C is, $\frac{7 \times 3}{7+3}=\frac{21}{10}=2.1 \Omega$.
The equivalent resistance between C and B is, $\frac{6 \times 4}{6+4}=\frac{24}{10}=2.4 \Omega$.
Now, equivalent resistance between A and B is $R_{\mathrm{AB}}=R_{\mathrm{AC}}+R_{\mathrm{BC}}$.
$R_{\mathrm{AB}}=2.1 \Omega+2.4 \Omega$
$R_{\mathrm{AB}}=4.5 \Omega$.
Thus, the equivalent resistance of the network is 4.5Ω.
Q.21. The equivalent resistance between A and B in the arrangement of resistances as shown is

A) $\quad 4 r$.
B) $3 r$.
C) $2.5 r$.
D) r.

Answer: r.

Solution: We can simplify the complex circuit diagram, as shown below.

We can see that between $A \& C$, the terminal $2 r$ and $2 r$ resistances are in parallel combination, and we can calculate using the following relation $\left(R_{\mathrm{eq}}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}\right)$.

Hence, we get, $\frac{2 r \times 2 r}{2 \mathrm{r}+2 r}=r$.
Similarly, we can calculate the parallel combination of resistances which are connected between $B \& C$ terminal $\frac{2 r \times 2 r}{2 r+2 r}=r$.

Again, we can calculate the parallel combination of resistances which are connected between $C \& D$ terminal by using the following relation, $\left(R_{\mathrm{eq}}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}\right)$.
Hence, we get, $\frac{r \times r}{r+r}=\frac{r}{2}$.
And now, we can redraw it.

Hence, it satisfies the relation $\frac{P}{Q}=\frac{R}{S}$,
where, $P=Q=R=S=r \Omega$
$\Rightarrow \frac{r}{r}=\frac{r}{r}$.
Hence, no current will be drawn from
$\frac{r}{2} \Omega$ resistance because the potential drop across the terminal will be zero.
Thus, this circuit is an example of a Wheatstone bridge.
The equivalent resistance is
$\frac{2 r \times 2 r}{2 r+2 r}=r$
(because r and r are in series combination, so $r+r=2 r$).
Q.22. In the circuit shown, the current through the 4Ω resistor is 1 A when the points P and M are connected to a DC voltage source. The potential difference between the points M and N is

A) 1.5 V
B) $\quad 1.0 \mathrm{~V}$
C) 0.5 V
D) 3.2 V

Answer: 3.2 V

Solution: Let us suppose the voltage of points P, M and N are $V_{\mathrm{P}}, V_{\mathrm{M}}$ and V_{N}, respectively. Here, the current through 4Ω resistance is 1 A . So, the voltage drop across it will be, $V=I R$
$\Rightarrow V=1 \mathrm{~A} \times 4 \Omega=4 \mathrm{~V}$
Since the 4Ω resistance is connected between the points P and M, so,
$V_{\mathrm{P}}-V_{\mathrm{M}}=4 \mathrm{~V}$
The equivalent resistance between P and N will be,
$R_{\text {eq }}=\frac{0.5 \times 0.5}{0.5+0.5}=0.25 \Omega$
Now, by applying voltage division law, the voltage drop across 1Ω resistance will be,
$V=\left(\frac{1}{1+0.25}\right) \times 4 \mathrm{~V}=3.2 \mathrm{~V}$
So, $V_{\mathrm{N}}-V_{\mathrm{M}}=3.2 \mathrm{~V}$
Q.23. In the given circuit, if I_{1} and I_{2} be the current in resistances R_{1} and R_{2}, respectively, then

A) $\quad I_{1}=2 \mathrm{~A}$ and I_{2} cannot be determined with given data.
B) $\quad I_{1}=0, I_{2}=2 \mathrm{~A}$
C) $\quad I_{1}=3 \mathrm{~A}, I_{2}=2 \mathrm{~A}$
D) None of these

Answer: $\quad I_{1}=2 \mathrm{~A}$ and I_{2} cannot be determined with given data.
Solution:

Applying Kirchhoff's first law at the junction B, we can write
$I_{1}+I_{2}+I_{\mathrm{AB}}=5 \Rightarrow I_{\mathrm{AB}}=5-I_{1}-I_{2} \ldots(1)$.
Applying Kirchhoff's first law at the junction A, we can write
$I_{2}+I_{\mathrm{AB}}=3 \Rightarrow I_{2}+5-I_{1}-I_{2}=3 \Rightarrow I_{1}=2 \mathrm{~A}$.
From (1), we have,
$I_{\mathrm{AB}}=5-2-I_{2}=3-I_{2}$.
Since, the value of I_{AB} is unknown, I_{2} can not be determined by given data.
Q.24. The effective resistance between A and B in the network shown, where the resistance of each resistor is R, is,

A) $\frac{8 R}{11}$
B) $\frac{6 R}{11}$
C) $\frac{6 R}{5}$
D) None of these.

Answer: $\quad \frac{8 R}{11}$

The upper part is the example of a Wheatstone bridge. It means the resistance at the middle of the upper part is shunted.

It means the new circuit is,

Now, the new resistance,

$$
\Rightarrow R^{\prime}=R+R+\frac{2 R}{3}=\frac{8 R}{3}
$$

Then, the net resistance is,
$R_{\mathrm{AB}}=\frac{R^{\prime} \times R}{R^{\prime}+R}=\frac{8(R / 3) \times R}{8(R / 3)+R}=\frac{8(R / 3)}{(11 / 3)}=\frac{8}{11} R$.
Q.25. Five identical resistors, each of value 1100Ω are connected to a 220 V battery as shown in figure. The reading of the ideal ammeter A is

A) $\frac{1}{5} \mathrm{~A}$
B) $\quad \frac{2}{5} \mathrm{~A}$
C) $\frac{3}{5} \mathrm{~A}$
D) $\frac{4}{5} \mathrm{~A}$
E) 1 A

Answer: $\quad \frac{3}{5} \mathrm{~A}$

Solution:

Total resistance of five identical resistors in parallel,

$$
R_{\text {parallel }}=\frac{R}{5}=\frac{1100}{5}=220 \Omega
$$

Total current on the circuit $=\frac{V}{R_{\text {parallel }}}=\frac{220}{220}=1 \mathrm{~A}$
As current divides in inverse ratio of resistance for resistors in parallel,
$I_{1}: I_{2}: I_{3}: I_{4}: I_{5}=\frac{1}{1100}: \frac{1}{1100}: \frac{1}{1100}: \frac{1}{1100}: \frac{1}{1100}$
Here each given current is current flowing through one resistance each.
Current through each resistor $=\frac{1}{5} \mathrm{~A}$
The ammeter will give reading of current through three resistors, due to Kirchoff's current law.
Thus, current as shown by ammeter $=3 \times \frac{1}{3}=\frac{3}{5} \mathrm{~A}$

Practice more on Current Electricity

