© Embibe

NEET Important Questions with Solutions from Atoms and Nuclei

Q.1. Two isotopes P and Q of atomic weight 10 and 20 , respectively, are mixed in equal amounts by weight. After 20 days, their weight ratio is found to be $1: 4$. Isotope P has a half-life of 10 days. The half-life of isotope Q is
A) zero
B) 5 days
C) 20 days
D) infinite

Answer: infinite

Solution: \quad Number of nuclei are proportional to number of moles.
Number of the mole is, $\frac{m}{M}=\left(\frac{\text { Mass of substance }}{\text { Molar mass }}\right)$
The ratio of the initial number of atoms of P and Q is,
$\frac{\left(N_{0}\right)_{\mathrm{P}}}{\left(N_{0}\right)_{\mathrm{Q}}}=\frac{m_{1}}{m_{2}} \times \frac{M_{2}}{M_{1}}=1 \times \frac{20}{10}=2$
The ratio of final number of atoms of P and Q is,
$\frac{N_{\mathrm{P}}}{N_{\mathrm{Q}}}=\frac{m_{1, \text { final }}}{m_{2, \text { final }}} \times \frac{M_{2}}{M_{1}}=\frac{1}{4} \times \frac{20}{10}=\frac{1}{2}$
Let n_{P} and n_{Q} be the number of half-lives of the samples of P and Q, respectively. Let T be the half-life of Q.
$n_{\mathrm{P}}=\frac{\text { Age }}{\text { Half life }}=\frac{20}{10}=2$ and $n_{\mathrm{Q}}=\frac{\text { Age }}{\text { Half life }}=\frac{20}{T}$
According to the radioactive law, number of undecayed nuclei left after n half-lives is, $N=\frac{N_{0}}{2^{n}}$
$\therefore \frac{N_{\mathrm{P}}}{N_{\mathrm{Q}}}=\frac{\left(N_{0}\right)_{\mathrm{P}}}{\left(N_{0}\right)_{\mathrm{Q}}} \times \frac{2^{n_{\mathrm{Q}}}}{2^{\mathrm{P}_{\mathrm{P}}}}$
$\frac{1}{2}=2 \times \frac{2^{n} \mathrm{Q}}{2^{2}}$
$\Rightarrow 2^{n_{Q}}=1=2^{0}$
$\Rightarrow n_{\mathrm{Q}}=0$
So,
$\frac{20}{T}=0$
$\Rightarrow T=\infty$
Q.2. The graph shows the \log of activity $\log R$ of a radioactive material as a function of time t in minutes.

The half-life (in minute) for the decay is closest to
A) 2.1
B) 3.0
C) 3.9
D) 4.4

Answer: 3.0

Solution: Activity of a radioactive sample is given by
$R=-\frac{d N}{d t}=-\frac{d}{d t} N_{0} e^{-\lambda t}=\lambda N_{0} \cdot e^{-\lambda t}$
So, $\log R=\log \left(\lambda N_{0}\right)+\log \left(e^{-\lambda t}\right)$
$\Rightarrow \log R=-\lambda t+\log \left(\lambda N_{0}\right)$
This equation is form of $y=m x+C$
So, absolute value of slope of $\log R$ versus t graph gives decay constant λ.
Now, from graph,

We get, slope $=\left|\frac{8-6}{8-16}\right|=\frac{1}{4}=\lambda$
So, half-life time period of sample is
$T_{1 / 2}=\frac{\log 2}{\lambda}=\frac{0.693}{1 / 4} \approx 3.0 \mathrm{~min}$
Q.3. The energy level diagram for a hydrogen-like atom is shown in the figure. The radius of its first Bohr orbit is

0 eV	$n=\infty$
$-6.04 \mathrm{eV} \longrightarrow$	
-13.6 eV	
$n=3$	
n	$=2$
$-54.4 \mathrm{eV} \longrightarrow n=1$	

A) $0.265 \AA$
B) $\quad 0.53 \AA$
C) $\quad 0.132 \AA$
D)

None of these

Answer:
$0.265 \AA$

Solution: From Bohr's Model, the energy of the electron is:

$$
E_{n}=-13.6 \frac{Z^{2}}{n^{2}} \mathrm{eV} \text { and radius of orbit is } r_{n}=0.53 \frac{n^{2}}{Z} \AA .
$$

Given for a H -like atom, for $n=1$,

$$
E_{1}=-54.4 \mathrm{eV}, \text { so, }
$$

$$
-54.4=-13.6 \frac{Z^{2}}{1^{2}} \text { or } Z=2
$$

Then radius of first Bohr orbit is

$$
r_{1}=0.53 \times \frac{1}{2}=0.265 \AA
$$

Q.4. Which of the series of hydrogen atom spectrum lies in the visible region of electromagnetic spectrum?
A) Lyman series
B) Pfund series
C) Balmer series
D) Brackett series

Answer: Balmer series

Solution: Wavelength of Balmer series is given by

$$
=\frac{1}{\lambda}=R_{H}\left[\frac{1}{2^{2}}-\frac{1}{n_{i}^{2}}\right]
$$

When transition of electron takes place from $n_{i}=\infty$ to $n_{f}=2$ wavelength of emitted photon is minimum, given by
$\frac{1}{\lambda_{\min }}=R_{H}\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]$ or $\lambda_{\min }=3646 \AA$
The range of the wavelength thus calculated is equivalent to the wavelength range at visible region of spectrum.
\therefore Balmer series lie in the visible region of electromagnetic spectrum.
Q.5. $\quad M_{\mathrm{p}}$ denotes the mass of a proton and M_{n} denotes that of a neutron. A given nucleus of binding energy B contains Z protons and
N neutrons. The mass
$M(N, Z) \quad$ of the nucleus is given by (c is velocity of light),
A) $\quad M(N, Z)=N M_{\mathrm{n}}+Z M_{\mathrm{p}}+B c^{2}$
B) $\quad M(N, Z)=N M_{\mathrm{n}}+Z M_{\mathrm{p}}-\frac{B}{c^{2}}$
C) $\quad M(N, Z)=N M_{\mathrm{n}}+Z M_{\mathrm{p}}+\frac{B}{c^{2}}$
D) $\quad M(N, Z)=N M_{\mathrm{n}}+Z M_{\mathrm{p}}-B c^{2}$

Answer:

$$
M(N, Z)=N M_{\mathrm{n}}+Z M_{\mathrm{p}}-\frac{B}{c^{2}}
$$

Solution:

$$
Z p+N n \rightarrow{ }^{\mathrm{N}+\mathrm{Z}} X+\text { energy }(B)
$$

We know that the binding energy, $B E=(\Delta m) c^{2}$ where, $\Delta \mathrm{m}$ is the mass defect which is given by,
$(\Delta m)=\left[Z M_{\mathrm{p}}+(A-Z) M_{\mathrm{n}}\right]-M(N, Z)$.
Now, from the question,
$B=\left[\left(Z M_{\mathrm{p}}+N M_{\mathrm{n}}\right)-M(N, Z)\right] c^{2}$
$\Rightarrow \frac{B}{c^{2}}=\left(Z M_{\mathrm{p}}+N M_{\mathrm{n}}\right)-M(N, Z)$.
Now,
$M(N, Z)=\left(Z M_{\mathrm{p}}+N M_{\mathrm{n}}\right)-\frac{B}{c^{2}}$.
Q.6. If ${ }_{92} \mathrm{U}^{238}$ changes to ${ }_{85} \mathrm{At}^{220}$ by a series of α - and β-decays, the number of α - and β-decays undergone, respectively, is
A) 7,5
B) 7,7
C) 5,7
D) 7,9

Answer: 7,7

Solution: In an α-decay $\left({ }_{2}^{4} \mathrm{He}^{2+}\right)$, mass number decreases by 4 and atomic number decreases by 2 .
In β^{-}-decay $\left(n \rightarrow p^{+}+e^{-}\right)$, mass number remains same while atomic number increases by 1 .
Therefore, if ${ }_{92} \mathrm{U}^{238}$ changes to ${ }_{85} \mathrm{At}^{210}$, the change in mass number $\Delta m=238-210=28$.
So, the number of α-decay $=\frac{\Delta m}{4}=\frac{28}{4}=7$
The change in atomic number due to 7α-decays $=7 \times 2=14$
Number of β^{-}-decay $=14-(92-85)=7$
Q.7. The binding energies per nucleon for a deuteron and an α-particle are x_{1} and x_{2}, respectively. What will be the energy Q released in the reaction ${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow 2 \mathrm{He}^{4}+Q$?
A) $4\left(x_{1}+x_{2}\right)$
B) $4\left(x_{2}-x_{1}\right)$
C) $2\left(x_{1}+x_{2}\right)$
D) $2\left(x_{2}-x_{1}\right)$

Answer: $\quad 4\left(x_{2}-x_{1}\right)$

Solution: \quad The binding energy of a nucleus $=$ binding energy per nucleon \times total number of nucleons in the nucleus.
So, the BE of deuteron $=x_{1} \times 2=2 x_{1}$
and BE of α-particle $=x_{2} \times 4=4 x_{2}$
${ }_{1} H^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+Q$
For the above reaction,
Total binding energy of the products $=4 x_{2}$
Similarly, total binding energy of the reactants $=2 x_{1}+2 x_{1}=4 x_{1}$
$Q=\mathrm{BE}_{\text {products }}-\mathrm{BE}_{\text {reactants }}$
$Q=4 x_{2}-4 x_{1}$
$Q=4\left(x_{2}-x_{1}\right)$
Q.8. The activity of a radioactive sample is measured as 9750 counts per minute at $t=0$ and as 975 counts per minute at $t=5$ minutes. The decay constant is approximately,
A) 0.922 per minute.
B) $\quad 0.691$ per minute.
C) 0.461 per minute .
D) 0.230 per minute.

Answer: 0.461 per minute.

Solution: According to radioactivity decay law, the number of decays per second is directly proportional to the number of active samples.
$\frac{\mathrm{d} N}{\mathrm{~d} t}=\lambda N$
$9750=\lambda N_{0} \ldots$ (i)
$975=\lambda N$
Dividing (i) by (ii),

$$
\frac{N}{N_{0}}=\frac{1}{10} .
$$

We know that,

$$
\begin{aligned}
& \lambda=\frac{2.303}{t} \log \frac{N_{0}}{N} \\
& =\frac{2.303}{5} \log 10 \\
& =0.4606=0.461 \text { per minute. }
\end{aligned}
$$

Q.9. The shortest wavelength in Lyman series is 91.2 nm . The longest wavelength of the series is
A) 121.6 nm
B) 182.4 nm
C) 234.4 nm
D) $\quad 364.8 \mathrm{~nm}$

Answer: 121.6 nm

Solution: The wavelength λ of lines is given by
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)$
For Lyman series, the shortest wavelength is for $n=\infty$ and longest is for $n=2$.
$\therefore \frac{1}{\lambda_{s}}=R\left(\frac{1}{1^{2}}\right)$
$\frac{1}{\lambda_{L}}=R\left(\frac{1}{1}-\frac{1}{2^{2}}\right)=\frac{3}{4} R$
Dividing equation (ii) by (i), we get,
$\frac{\lambda_{L}}{\lambda_{s}}=\frac{4}{3}$
Given, $\lambda_{s}=91.2 \mathrm{~nm}$
$\Rightarrow \lambda_{L}=91.2 \times \frac{4}{3}=121.6 \mathrm{~nm}$
Q.10. A hydrogen atom is in the $4^{\text {th }}$ excited state, then:
A) the maximum number of emitted photons will be 10 .
B) the maximum number of emitted photons will be 6 .
C) it can emit three photons in ultraviolet region.
D) if an infrared photon is generated, then a visible photon may follow this infrared photon.

Answer: if an infrared photon is generated, then a visible photon may follow this infrared photon.

Solution: The hydrogen atom is in $n=5$ state.
\therefore Maximum number of possible photons $=4$
To emit a photon in the ultraviolet region, it must jump to $n=1$, because only Lyman series lies in U. V. region. Once it jumps to $n=1$ photon, it reaches its ground state and no more photons can be emitted. So only one photon in U. V. range can be emitted.

If H atom emits a photon and then another photon of Balmer series, option D will be correct.
Q.11. A radioactive sample, at any instant, has its disintegration rate 5000 disintegration per minute. After 5 min , the rate is 1250 disintegration per minute. Then, the decay constant (per min) is
A) $0.4 \ln (2)$
B) $0.2 \ln (2)$
C) $0.1 \ln (2)$
D) $0.8 \ln (2)$

Answer: $\quad 0.4 \ln (2)$

Solution: \quad Rate of disintegration is the activity of the sample.
According to the question, initial activity at time $t=0$ is $A_{0}=5000$ disintegration per minute

And activity at time $t=5 \mathrm{~s}$ is
$A=1250$ disintegration per minute
Now, according to radioactive decay law,
$A=A_{0} e^{-\lambda t}$
where, λ is the decay constant.
Putting the values, we get,

$$
\begin{aligned}
& 1250=5000 e^{-5 \lambda} \\
& \Rightarrow e^{-5 \lambda}=\frac{1}{4} \\
& \Rightarrow e^{5 \lambda}=4 \\
& \Rightarrow 5 \lambda=2 \ln (2) \\
& \Rightarrow \lambda=\frac{2 \ln (2)}{t}=\frac{2 \ln (2)}{5} \\
& \Rightarrow \lambda=0.4 \ln (2) \mathrm{min}^{-1}
\end{aligned}
$$

Q.12. The initial ratio of active nuclei in two different samples is
$2: 3$. Their half-lives are 2 hours and
3 hours, respectively. The ratio of their activities at the end of 12 hours is
A) $1: 6$
B) $6: 1$
C) $1: 4$
D) $4: 1$

Answer: 1:4

Solution: \quad According to radioactive decay law, activity is given by,
$A=A_{0} e^{-\lambda t}=\lambda N_{0} e^{-\lambda t}$
where, $A_{0}=\lambda N_{0}$
$A_{0}=$ Initial activity of the radioactive sample $(t=0)$
$A=$ Activity after time t of the radioactive sample
$N_{0}=$ Initial active nuclei of the radioactive sample $(t=0)$
$\lambda=$ Decay constant
Given:
Time, $t=12$ hours
Initial ratio of active nuclei in two given samples, $\frac{\left(N_{0}\right)_{1}}{\left(N_{0}\right)_{2}}=\frac{2}{3}$
Half lives,
$\left(T_{1 / 2}\right)_{1}=2$ hours (Half life of sample 1)
$\left(T_{1 / 2}\right)_{2}=3$ hours (Half life of sample 2)
Decay constant is given by, $\lambda=\frac{\ln (2)}{T_{1} / 2}=\frac{0.693}{T_{1} / 2}$
$\therefore \frac{\lambda_{1}}{\lambda_{2}}=\frac{\left(T_{1} / 2\right)_{2}}{\left(T_{1} / 2\right)_{1}}=\frac{3}{2}$
From equation (1),
$\frac{A_{1}}{A_{2}}=\frac{\lambda_{1}\left(N_{0}\right)_{1}}{\lambda_{2}\left(N_{0}\right)_{2}}\left[e^{-\left(\lambda_{1}-\lambda_{2}\right) t}\right]$
Substituting the given values in the above formula,
$\frac{A_{1}}{A_{2}}=\left(\frac{3}{2}\right)\left(\frac{2}{3}\right) e^{-\left(\frac{\ln (2)}{\left(T_{1} / 2\right)_{1}}-\frac{\ln (2)}{\left.\left(T_{1} / 2\right)_{2}\right)}\right) \times 12}$
$\Rightarrow \frac{A_{1}}{A_{2}}=e^{-\ln (2) \times\left(\frac{1}{2}-\frac{1}{3}\right) 12}$
$\Rightarrow \frac{A_{1}}{A_{2}}=e^{-2 \ln (2)}$
$\Rightarrow \frac{A_{1}}{A_{2}}=e^{-\ln \left(2^{2}\right)}$
$\Rightarrow \frac{A_{1}}{A_{2}}=\frac{1}{4}$
Q. 13.

The half-life of radioactive Radon is 3.8 days. The time at the end of which $\left(\frac{1}{20}\right)^{\text {th }}$ of the Radon sample will remain undecayed is (given $\log _{10} \mathrm{e}=0.4343$)
A) 13.8 days
B) 16.5 days
C) 33 days
D) 76 days

Answer: 16.5 days

Solution: Given:
Half-life of the sample, $t_{1 / 2}=3.8$ days
Number of Radon nucleus remaining, $\frac{N_{0}}{20}$
where, N_{0} is the initial number of Radon nucleus present.
Decay constant of the sample,
$\lambda=\frac{0.693}{t_{1} / 2}=\frac{0.693}{3.8}=0.182 \mathrm{days}^{-1}$
Time taken by the radioactive substance remain N number of nucleus.

$$
\begin{aligned}
& t=\frac{2.303}{\lambda} \log \left(\frac{N_{0}}{N}\right) \\
& \Rightarrow t=\frac{2.303}{0.182} \log (20)=16.46 \text { days }
\end{aligned}
$$

Q.14. In an inelastic collision, an electron excites a hydrogen atom from its ground state to a M-shell state. A second electron collides instantaneously with the excited hydrogen atom in the M-state and ionises it. At least how much energy the second electron transfers to the atom in the M-state?
A) +3.4 eV
B) +1.51 eV
C) $\quad-3.4 \mathrm{eV}$
D) $\quad-1.51 \mathrm{eV}$

Answer: $\quad-1.51 \mathrm{eV}$

Solution: \quad Given that the electron is in M-state. This corresponds to the principle of quantum number $n=3$.
From Bohr's model, the energy of a state with quantum number n is given by,

$$
E=-\frac{13.6}{n^{2}} .
$$

Thus, the energy of the electron in M-shell is,
we know that $E_{\mathrm{m}}=-\frac{13.6}{(n)^{2}}$
$E_{\mathrm{m}}=-\frac{13.6 \mathrm{eV}}{(3)^{2}}=-1.51 \mathrm{eV}$
In order to ionise the atom, the minimum energy required is +1.51 eV .
Q.15. A radioactive nuclide is produced at the constant rate of n per second (say, by bombarding a target with neutrons). The expected number N of nuclei in existence t seconds after the number is N_{0} is given by
A) $\quad N=N_{0} e^{-\lambda t}$
B) $\quad N=\frac{\mathrm{n}}{\lambda}+N_{0} e^{-\lambda t}$
C) $\quad N=\frac{\mathrm{n}}{\lambda}+\left(N_{0}-\frac{\mathrm{n}}{\lambda}\right) e^{-\lambda t}$
D) $\quad N=\frac{\mathrm{n}}{\lambda}+\left(N_{0}+\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda t}$

Answer:

$$
N=\frac{\mathrm{n}}{\lambda}+\left(N_{0}-\frac{\mathrm{n}}{\lambda}\right) e^{-\lambda t}
$$

Solution:
Rate of change of nuclei $=$ Rate of production of nuclei - Rate of decay
$\Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\mathrm{n}-\lambda N \quad[\lambda=$ Decay Constant $]$
$\Rightarrow \mathrm{d} N=(\mathrm{n}-\lambda N) \mathrm{d} t$
$\Rightarrow \frac{\mathrm{d} N}{(\mathrm{n}-\lambda N)}=\mathrm{d} t$
According to question, at $t=0, N=N_{0}$
Integrating both sides and putting the limits, we get,
$\int_{N_{0}}^{N} \frac{\mathrm{~d} N}{\mathrm{n}-\lambda N}=\int_{0}^{t} \mathrm{~d} t$
$\Rightarrow-\frac{1}{\lambda} \int_{N_{0}}^{N} \frac{-\lambda \mathrm{d} N}{\mathrm{n}-\lambda N}=\int_{0}^{t} \mathrm{~d} t$
$\Rightarrow-\frac{1}{\lambda}\left[\log _{\mathrm{e}}(\mathrm{n}-\lambda N)\right]_{N_{0}}^{N}=t$
$\Rightarrow-\frac{1}{\lambda}\left[\log _{\mathrm{e}}\left(\frac{\mathrm{n}-\lambda N}{\mathrm{n}-\lambda N_{0}}\right)\right]=t$
$\Rightarrow \lambda t=\left[\log _{\mathrm{e}}\left(\frac{\mathrm{n}-\lambda N_{0}}{\mathrm{n}-\lambda N}\right)\right]$
$\mathrm{e}^{\lambda \mathrm{t}}=\frac{\mathrm{n}-\lambda \mathrm{N}_{0}}{\mathrm{n}-\lambda \mathrm{N}}$
$\mathrm{n}-\lambda N=\left(\mathrm{n}-\lambda N_{0}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
$N=\frac{\mathrm{n}}{\lambda}+\left(N_{0}-\frac{\mathrm{n}}{\lambda}\right) \mathrm{e}^{-\lambda \mathrm{t}}$
Q.16. Which one of the following statements is wrong in the context of X-rays generated from a X-ray tube?
A) Wavelength of characteristic X-rays decreases when the atomic number of the target increases.
B) Cut-off wavelength of the continuous X-rays depends on the atomic number of the target.
C) Intensity of the characteristic X-rays depends on the electrical power given to the X-ray tube.
D) Cut-off wavelength of the continuous X-rays depends on the energy of the electrons in the X-ray tube.

Answer: Cut-off wavelength of the continuous X-rays depends on the atomic number of the target.
Solution: The frequency of Characteristic X-ray is given by Moseley's Law

$$
\sqrt{f}=a(Z-b) \Rightarrow\left(\frac{1}{\lambda}\right) \propto(Z-b)^{2}
$$

So, wavelength of characteristic X-rays decreases when the atomic number of the target increases.
Now cut-off wavelength of continuous X-rays is given by
$\lambda_{\text {min }}=\frac{h c}{e V}=\frac{h c}{E}$
So, it does not depend on the atomic number of the target, but it will depend on the energy of the electrons in the X-ray tube.

The intensity of X-rays depends on the number of electrons striking the target per second, which in turn depends on electrical power given to the X-ray tube.
Q.17. The Binding energy per nucleon of ${ }_{3}^{7} L i$ and ${ }_{2}^{4} \mathrm{He}$ nuclei are 5.60 MeV and 7.06 MeV , respectively. In the nuclear reaction ${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He}+Q$, the value of energy Q released is
A) $\quad 19.6 \mathrm{MeV}$
B) -2.4 MeV
C) 8.4 MeV
D) $\quad 17.3 \mathrm{MeV}$

Answer: $\quad 17.3 \mathrm{MeV}$

Solution: \quad Binding energy of ${ }_{2}^{4} \mathrm{He}=4 \times 7.06=28.24 \mathrm{MeV}$
Binding energy of ${ }_{3}^{7} \mathrm{Li}=7 \times 5.60=39.20 \mathrm{MeV}$
Given nuclear reaction is,
${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}+Q$
Total energy remains the same before and after the reaction.
Therefore, energy released, $Q=B E_{\text {after }}-B E_{\text {before }}$
$Q=2 \times(28.24)-39.20=17.28 \mathrm{MeV}$.
Q.18. A radioactive material decays by simultaneous emission of two particles with respective half-lives, 1620 and 810 years. The time (in years) after which one-fourth of the material remains is
A) $\mathbf{1 0 8 0}$
B) 2430
C) 3240
D) 4860

Answer: 1080

Solution: Decay constant λ of a radioactive sample is given by,
$\lambda=\frac{0.693}{t_{1} / 2} \ldots(1)$
where, $t_{1 / 2}$ is the half-life of the sample.
Given half-lives of first and second processes as 1620 years and 810 years, respectively.
Let the decay constant for first and second processes be λ_{1} and λ_{2}, respectively. So, using equation (1), we have,
$\lambda_{1}=\frac{0.693}{1620}$ year $^{-1}$
and $\lambda_{2}=\frac{0.693}{810}$ year $^{-1}$
In simultaneous decay, effective decay constant is given by,
$\lambda_{\text {net }}=\lambda_{1}+\lambda_{2}=\frac{0.693}{1620}+\frac{0.693}{810}$
$\Rightarrow \lambda_{\text {net }}=0.693 \times\left(\frac{2430}{(1620) \times(810)}\right)$ year $^{-1}$
Hence, the net half-life of simultaneous decay is,
$T_{1 / 2}=\frac{0.693}{\lambda_{\text {net }}}=\frac{0.693}{0.693 \times\left(\frac{2430}{(1620) \times(810)}\right)}$
$\Rightarrow T_{1 / 2}=\frac{(1620) \times(810)}{2430}=540$ years.
Now, according to radioactive law, the number of active nuclei N after n half-lives is given by,
$N=\frac{N_{0}}{2^{n}}$
$\Rightarrow \frac{N}{N_{0}}=\frac{1}{2^{n}}$
where, N_{0} and N are the number of initial active nuclei and number of active nuclei after time t (i.e., after n halflives).
According to the question, $\frac{N}{N_{0}}=\frac{1}{4}$.
Putting in the above equation, we get,
$\Rightarrow \frac{1}{4}=\frac{1}{2^{n}}$
$\Rightarrow n=2$
So, the required time will be
$t=n \times\left(T_{1 / 2}\right)$
$\Rightarrow t=2 \times\left(T_{1 / 2}\right)=2 \times(540)=1080$ years
Q.19. The decay constant of a radioisotope is λ. If
A_{1} and A_{2} are its activities at times
t_{1} and
t_{2}, respectively, then the number of nuclei decayed during the time $\left(t_{2}-t_{1}\right)$ is
A) $A_{1} t_{1}-A_{2} t_{2}$
B) $A_{1}-A_{2}$
C) $\frac{\left(A_{1}-A_{2}\right)}{\lambda}$
D) $\lambda\left(A_{1}-A_{2}\right)$

Answer: $\frac{\left(A_{1}-A_{2}\right)}{\lambda}$

Solution: \quad Activity A of a radioactive nucleus is given by
$A=\lambda N$
where, λ is the decay constant and N is the number of active nuclei.
Given, at time $t=t_{1}$, activity $=A_{1}=\lambda N_{1}$, where N_{1} is the number of active nuclei at time t_{1}.
And, at time $t=t_{2}$, activity $=A_{2}=\lambda N_{2}$, where N_{2} is the number of active nuclei at time t_{2}.
So, $N_{1}=\frac{A_{1}}{\lambda}$ and $N_{2}=\frac{A_{2}}{\lambda}$
Thus, the number of molecules decayed during $\left(t_{2}-t_{1}\right)$ is $N_{1}-N_{2}$
$\therefore N_{1}-N_{2}=\frac{A_{1}}{\lambda}-\frac{A_{2}}{\lambda}=\frac{\left(A_{1}-A_{2}\right)}{\lambda}$
Q.20. A radioactive element can undergo α and β type of disintegrations with half-lives
T_{1} and T_{2}, respectively. Then, the half-life of the element is
A) $T_{1}+T_{2}$
B) $\quad T_{1} T_{2}$
C) $\quad T_{1}-T_{2}$
D) $\frac{T_{1} T_{2}}{T_{1}+T_{2}}$

Answer: $\frac{T_{1} T_{2}}{T_{1}+T_{2}}$

Solution: \quad This is the situation of simultaneous radioactive decay.
As the nucleus can undergo α and β type of disintegration, effective decay rate is the sum of the individual decay rate.
$\therefore\left(\frac{\mathrm{d} N}{N}\right)_{\text {eff }}=\frac{\mathrm{d} N_{\alpha}}{N}+\frac{\mathrm{d} N_{\beta}}{N}$
Effective decay constant is given by,
$\lambda_{\text {eff }}=\lambda_{\alpha}+\lambda_{\beta}$
Now, decay constant is given by,

$$
\begin{aligned}
& \lambda=\frac{\ln 2}{t_{1} / 2} \\
& \therefore\left(\frac{\ln 2}{t_{1} / 2}\right)_{\mathrm{eff}}=\left(\frac{\ln 2}{T_{1}}\right)+\left(\frac{\ln 2}{T_{2}}\right) \\
& \Rightarrow\left(t_{1 / 2}\right)_{\mathrm{eff}}=\frac{T_{1} \times T_{2}}{T_{1}+T_{2}}
\end{aligned}
$$

Q.21. If R is the Rydberg constant in cm^{-1}, then hydrogen atom does not emit any radiation of wavelength in the range of
A) $\frac{1}{R}$ to $\frac{4}{3 R} \mathrm{~cm}$
B) $\frac{7}{5 R}$ to $\frac{19}{5 R} \mathrm{~cm}$
C) $\frac{4}{R}$ to $\frac{36}{5 R} \mathrm{~cm}$
D) $\frac{9}{R}$ to $\frac{144}{7 R} \mathrm{~cm}$

Answer: $\frac{7}{5 R}$ to $\frac{19}{5 R} \mathrm{~cm}$

Solution: Wavelength of emitted radiation is given by
$\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
For Lyman series,
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)$ where $n=2,3,4, \ldots \ldots$
The range of wavelength in this series is given by
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3 R}{4} \mathrm{~cm}^{-1}$
and $\frac{1}{\lambda_{\min }}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)=R \mathrm{~cm}^{-1}$
Thus for Lyman : $\left[\frac{1}{R}\right.$ to $\left.\frac{4}{3 R} \mathrm{~cm}\right]$
For Balmer series,
$\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$, where $n=3,4,5, \ldots$
The range of wavelength in this series is given by
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 R}{36} \mathrm{~cm}^{-1}$
and $\frac{1}{\lambda_{\text {min }}}=R\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=\frac{R}{4} \mathrm{~cm}^{-1}$
Thus, for Balmer: $\left[\frac{4}{R}\right.$ to $\left.\frac{36}{5 R} \mathrm{~cm}\right]$
For Paschen series,
$\frac{1}{\lambda}=R\left(\frac{1}{3^{2}}-\frac{1}{n^{2}}\right)$ where $n=4,5,6, \ldots$.
The range of wavelength in this series is given by
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)=\frac{7 R}{144} \mathrm{~cm}^{-1}$
and $\quad \lambda_{\min }=R\left(\frac{1}{3^{2}}-\frac{1}{\infty^{2}}\right)=\frac{R}{9} \mathrm{~cm}^{-1}$
Thus, for Paschen : $\left[\frac{9}{R}\right.$ to $\left.\frac{144}{7 R} \mathrm{~cm}\right]$
For Brackett series,
$\frac{1}{\lambda}=R\left(\frac{1}{4^{2}}-\frac{1}{n^{2}}\right)$, where $n=5,6,7, \ldots$
The range of wavelength in this series is given by
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{4^{2}}-\frac{1}{5^{2}}\right)=\frac{9 R}{400} \mathrm{~cm}^{-1}$
and $\frac{1}{\lambda_{\text {min }}}=R\left(\frac{1}{4^{2}}-\frac{1}{\infty^{2}}\right)=\frac{R}{16} \mathrm{~cm}^{-1}$
Thus, for Brackett : $\left[\frac{16}{R}\right.$ to $\left.\frac{400}{9 R} \mathrm{~cm}\right]$
For Pfund series,
$\frac{1}{\lambda}=R\left(\frac{1}{5^{2}}-\frac{1}{n^{2}}\right)$ where $n=6,7,8, \ldots$
The range of wavelength in this series is given by
$\frac{1}{\lambda_{\max }}=R\left(\frac{1}{5^{2}}-\frac{1}{6^{2}}\right)=\frac{11 R}{900} \mathrm{~cm}^{-1}$
and $\frac{1}{\lambda_{\min }}=R\left(\frac{1}{5^{2}}-\frac{1}{\infty^{2}}\right)=\frac{R}{25} \mathrm{~cm}^{-1}$
Thus, for Pfund: $\left[\frac{25}{R}\right.$ to $\left.\frac{900}{11 R} \mathrm{~cm}\right]$
Hence, wavelength range of $\left(\frac{7}{5 R}\right.$ to $\left.\frac{19}{5 R} \mathrm{~cm}\right)$ does not emit.
Q.22. Suppose the potential energy between electron and proton at a distance r is given by $-\frac{k e^{2}}{3 r^{3}}$. Application of Bohr's theory to hydrogen atom in this case shows that:
A) Energy in the $\mathrm{n}^{\text {th }}$ orbit is proportional to n^{5}
B) Energy is proportional to $\mathrm{m}^{-3}(\mathrm{~m}=$ mass of electron $)$
C) Energy in the $\mathrm{n}^{\text {th }}$ orbit is proportional to n^{-2}
D) Energy is proportional to $\mathrm{m}^{3}(\mathrm{~m}=$ mass of electron)

Answer: Energy is proportional to $\mathrm{m}^{-3}(\mathrm{~m}=$ mass of electron)

Solution: Given,
Potential energy $(U)=-\frac{k e^{2}}{3 r^{3}}$
The electrostatic force between an electron and a proton at a distance r is given by, $F=-\frac{\partial U}{\partial r}=\frac{k e^{2}}{r^{4}}$
According to Bohr's first postulate,
$\frac{m v^{2}}{r}=F=\frac{k e^{2}}{r^{4}}$
$\Rightarrow K . E .=\frac{1}{2} m v^{2}=\frac{k e^{2}}{2 r^{3}}$
According to Bohr's second postulate,

$$
\begin{equation*}
m v r=\frac{n h}{2 \pi} \tag{4}
\end{equation*}
$$

From equation (3) and (4) -
$\Rightarrow r=\frac{4 \pi^{2} e^{2} m k}{n^{2} h^{2}}$
We know that,
Total energy $(E)=K . E+U$
$\Rightarrow E=\frac{\mathrm{k} e^{2}}{2 r^{3}}-\frac{\mathrm{k} e^{2}}{3 r^{3}}$
$\Rightarrow E=\frac{\mathrm{k} e^{2}}{6 r^{3}}$
Substituting the value of r, we will get -

$$
\begin{aligned}
& \Rightarrow E=\frac{n^{6} h^{6}}{6(2 \pi)^{6} m^{3} k^{2} e^{4}} \\
& \Rightarrow E \propto \frac{1}{m^{3}}
\end{aligned}
$$

Q.23. In a hydrogen like atom, when an electron jumps from the M-shell to the L-shell, the wavelength of emitted radiation is λ. If an electron jumps from N -shell to the L-shell, the wavelength of emitted radiation will be
A) $\frac{16}{25} \lambda$
B) $\frac{25}{16} \lambda$
C) $\frac{20}{27} \lambda$
D) $\frac{27}{20} \lambda$

Answer: $\quad \frac{20}{27} \lambda$

Solution:
Energy in transition of electron from higher orbit to lower orbit is given by,
$\frac{h c}{\lambda}=(13.6 \mathrm{eV}) Z^{2}\left(\frac{1}{n_{f}{ }^{2}}-\frac{1}{n_{i}^{2}}\right)$
From M orbit to L orbit:
$\frac{h c}{\lambda_{1}}=(13.6 \mathrm{eV}) Z^{2}\left(\frac{1}{4}-\frac{1}{9}\right) \ldots(\mathrm{i})$
From N orbit to L orbit:
$\frac{h c}{\lambda_{2}}=(13.6 e \mathrm{~V}) Z^{2}\left(\frac{1}{4}-\frac{1}{16}\right)$
dividing (i) by (ii)
$\frac{\lambda_{2}}{\lambda_{1}}=\frac{5}{36} \times \frac{64}{12}=\frac{20}{27} \Rightarrow \lambda_{2}=\frac{20}{27} \lambda_{1}$
Q.24. A radioactive nucleus with Z protons and N neutrons emits an α-particle, 2β - particles and 2 gamma rays. The number of protons and neutrons in the nucleus left after the decay respectively, are:
A) $Z-3, \mathrm{~N}-1$
B) $\quad Z-2, \mathrm{~N}-2$
C) $\quad Z-1, \mathrm{~N}-3$
D) $Z, \mathrm{~N}-4$

Answer: $\quad Z, \mathrm{~N}-4$

Solution:

$$
\begin{aligned}
& Z X^{A} \xrightarrow{\alpha} Z-2 X^{A-4} \xrightarrow{2 \beta} Z_{Z} X^{A-4} \xrightarrow{2 \gamma} Z_{Z} X^{A-4} \\
& \mathrm{P}=\mathrm{Z} \\
& \text { Neutron }=(\mathrm{A}-4)-\mathrm{Z} \\
& =(\mathrm{A}-\mathrm{Z})-4 \\
& =\mathrm{N}-4
\end{aligned}
$$

Q.25. A beam of 30 keV electrons strikes different targets in different experiments. The lowest wavelength cut-off of the continuous spectrum of X-rays generated by beam for any target is,
A) $1.0 \times 10^{-10} \mathrm{~m}$
B) $\quad 3.0 \times 10^{-10} \mathrm{~m}$
C) $4.14 \times 10^{-11} \mathrm{~m}$
D) dependent on the nature of the target.

Answer: $\quad 4.14 \times 10^{-11} \mathrm{~m}$

Given, energy of the electron beam, $E=30 \mathrm{keV}$.
We know that for continuous spectrum of x-rays, we have, $E=\frac{h c}{\lambda}$
where, h is Planck's constant,
c is the speed of the light,
E is the energy of the wave,
λ is the wavelength associated with it.
$\Rightarrow \lambda=\frac{h c}{E}$
Putting in the values and solving, we get,
$\lambda=\frac{\left(6.626 \times 10^{-34}\right) \times\left(3 \times 10^{8}\right)}{\left(30 \times 10^{3}\right) \times\left(1.6 \times 10^{-19}\right)}$
$\Rightarrow \lambda=4.14 \times 10^{-11} \mathrm{~m}$.

Practice more on Atoms and Nuclei

