MODEL QUESTION PAPER (TERM - 1) CLASS - +2

SUBJECT - MATHEMATICS

Time	: 3	hours	M.M.	:	50
ııme	: 3	nours	IVI.IVI.	:	5

- 1. The function f : A B defined by f(x) = 4x + 7, $x \in R$ is :
 - (a) One-one

(b) Many-one

(c) Odd

- (d) Even
- 2. The function $f: \mathbb{R} \otimes \mathbb{R}$ defined by f(x) = 3 4x is 1
 - (a) Onto

- (b) Not onto
- (c) None one-one
- (d) None of these
- 3. The binary operation * defind on set R, given by $a * b = a + b^2$ for all $a, b \in R$ is
 - (a) commutative
 - (b) associative
 - (c) Both (a) and (b)
 - (d) None of these
- 4. Let R be a relation on set of lines as L1 R L2 if L1 is perpendicular to L2. Then
 - (a) R is Reflexive
 - (b) R is transitive
 - (c) R is symmetric
 - (d) R is an equivalence relation

- 5. The principle value of $\sin^{-1} a (\sqrt{3}/2)$ is
 - (a) $\frac{2\pi}{3}$

(b) $\frac{\tau}{\epsilon}$

(c) $\frac{\pi}{4}$

- (d) $\frac{\pi}{3}$
- 6. If $y = \sec^{-1} x$ then
 - (a) $0 \le y \le \pi$
- (b) $0 \le y \le \frac{\pi}{2}$
- (c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$
- (d) None of these
- 7. The principle value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is
 - (a) $\frac{2\pi}{3}$

(b) $\frac{\pi}{3}$

(c) $\frac{-\pi}{6}$

- (d) $\frac{\pi}{6}$
- 8. $\sin\left[\frac{\pi}{3} \sin^{-1}\left(\frac{-1}{2}\right)\right]$ is equal to
 - $\frac{1}{2}$
- (b) $\frac{1}{3}$

(c) $\frac{1}{4}$

(d) 1

1

9.	The number of all possible each entry 0 or 1 is:	matrices of order 3×3 w	vith 1 15.	The derivative of $\tan \left(\frac{\pi}{2}\right)$	-x is equal to			
	(a) 27	(b) 18		(2)			
	(c) 81	(d) 512		(a) $\sec^2\left(\frac{\pi}{2}-x\right)$	(1-)			
10.	If A and B are symmetric r	natrices of same order, the	hen	(a) $\sec \left(2^{-x}\right)$	(b) $-\csc x$			
	AB-BA is a		1	(c) $\csc^2 x$	(d) none of these			
	(a) Skew-symmetric matr	tix		_				
	(b) Symmetric matrix		16	If $x = t^2$, $y = t^3$, then $\frac{d^2y}{dx^2}$	· - <u>-</u>			
	(c) Zero matrix		10.	$\int \int \int dx^2 dx^2$	_			
	(d) Identity			2	2			
11.	If a matrix has 6 element	-	ble	(a) $\frac{3}{2}$	(b) $\frac{3}{4t}$			
	orders of the matrix can be		1	_				
	(a) 2	(b) 4		(c) $\frac{3}{2t}$	(d) $\frac{3t}{2}$			
	(c) 3	(d) 6		2t	(u) 2			
12.	The diagonal elements of a	skew symmetric matrix ai	re I 17.	17. Derivative of $\sin x$ w.r.t. $\cos x$ is				
	(a) all zeroes			(a) $-\cot x$	(b) $\cot x$			
	(b) are all equal to some	$\operatorname{scalar} k \ (\neq 0)$		(c) $\tan x$	(d) none of these			
	(c) can be any number			<i>1</i> .				
	(d) none of these		18.	If $y = \log \sqrt{\tan}$, then $\frac{dy}{dx}$ is	3			
13.	Let A be a non-singular so	quare matrix of order 3 >	×3,	ast				
	then [A. adj A] is equal to	a > 1 + 12	1	(a) $\cos 2x$	(b) $\sin 2x$			
	(a) $ A ^3$			(c) $\csc 2x$	(d) none of these			
	(c) A	(d) 3 A		The function $(x) = 4 - 3x + 3x$	$+3x^2-x^3$ is:			
14.	The area of a triangle with		and	(a) decreasing on R	(b) increasing on R			
	(0, k) is 9 sq. units. Then, t			(c) strictly decreasing on l	R			
	(a) 9	(b) 3		(d) strictly increasing on R	₹			
	(c) –9	(d) 6		-				

- 20. The line y = x + 1 is a tangent to the curve $y^2 = 4x$ at the point 1
 - (a) (1, 2)
- (b) (2, 1)
- (c) (-1, 2)
- (d) (-1, -2)
- 21. Check the injectivity and surjectivity of the function:
 - (i) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x) = x^2$

Or

Show that $f: [-1, 1] \otimes R$, given by f(x) = (2) xx + is one-one. Find the inverse of the function $f: [-, 1] \longrightarrow Range f$

- 22. Express in surplest form $\tan^{-1} \left(\frac{\cos x}{1 \sin x} \right)$ 3
 - $\frac{-\pi}{2} < x < \frac{\pi}{2}$
- 23. Express the matrix **as** sum of symmetric and skew symmetric matrix.

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Or

Find
$$A^2 - 5A + 6I$$
 if $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$

24. Show that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

25. Finde the value of k so that the function f, defined by 3

$$f(x) = \begin{cases} kx+1 & \text{if } x \le 5\\ 3x-5 & \text{if } x > 5 \end{cases}$$
 is continuous at $x = 5$

26. If $y = 3e^{2x} + 2e^{3x}$ then prove that

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

Or

Find
$$\frac{dy}{dx}$$
 if $\sin^2 y + \cos xy = \overline{\mathbf{X}}$

27. Solve the following system of equations by matrix method.

$$x - y + z = 4$$

$$2x + y - 3z = 0$$

$$x + y + z = 2$$

28. (a) Find the equations of tangent and normal to

hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 at point (x_0, y_0)

6

(b) Find approximate value of $\sqrt{25.3}$

Or

- (a) Find two positive numbers x and y such that their sum is 35 and the product x^2y^5 is maximum.
- (b) Find the interval in which the function of given by $f(x) = -2x^3 9x^2 12x + 1$ is strictly increasing and strictly decreasing.