DISTRIBUTION FOR MARKS CLASS - +2

SUBJECT - CHEMISTRY

Time: 3 hours

M.M.: 50

S. No.	Unit	1 mark Ques.	2 mark Ques.	3 mark Ques.	Total Marks
1.	Solid state	3		1	6
2.	Solutions	3	_	1	6
3.	The P-Block Elements	4	2	-	8
4.	General Principles & process of isolation of elements	2	1	-	4
5.	Haloalkanes & Haloarenes	2	3		8
6.	Alcohols, Phenols & Carboxylic	2	3	-	8
7.	Biomolecules	3	-	1	6
8.	Polymers	1	-	1	4
	Total	20	9	4	50

PAPER TERM - 1

CLASS - +2

SUBJECT - CHEMISTRY

Time: 3 hours M.M.: 50

Instructions:-

- (i) All questions are compulsory
- (ii) While answering your questions, you must indicate on your answer sheet the same question no as appearing in your question paper.
- (iii) Internal choices are given in same questions.
- (iv) Question No. 1–20 carry 1 mark, question 21–29 carry 2 marks, question 30–33 are of 3 marks.
- 1. For hap Lattice, the edge length is equal to.
 - (a) 2V2r

(b) 2r

(c) $\frac{V3}{4}$ r

- (d) $\frac{4}{\sqrt{3}}$
- 2. The empty space in hap arrangement is.
 - (a) 34%

(b) 47.6%

(c) 32%

- (d) 26%
- 3. The appearance of colour in solid alkali metal halide is generally due to.

		(a)	Schottky defect	(b)	FinenKal defect	8.	Pure	es form of iron is		
		(c)	F-centre	(d)	Inrterstitial position	9.	Dra	w the structure of HC	1O ₄ ?	
	4.	The no. of moles in 180g of water is.			ater is.	10.	g in dry ether to form			
		(a)	1	(b)	10					
		(c)	18	(d)	100	11.	Ca($OH)_2 + Cl_2 \rightarrow \dots$	•••	
	5.	Mol	ality of the solution is	5.		12.	12. The hybridisation in ICI ₇ is.			
		(a)	no. of gm moles of s	solute	e dissolved per meof			•	10.00	Cl ² sp ³
			sol ⁿ				(c)	Sp ³ Cl	(d)	Sp ³
đ		(p)	no. of moles of so	lute	dissolved per kg of	13.		process of converting	-	
		2 5	solvent				anh	ydrous alumina is cal	led	
		(c)	no. of moles of solution	ute o	issolved per litre of	14.	C ₆ H	$_{5}OH \xrightarrow{Conc.HNO_{3}} H_{2}SO_{4}$		It gives
		(d)	No. of gm of solute d	issol	ved per kg of solvent		(a)	Benzene		
	6.	Isoto	onic solutions have.				(b)	Catehol		
		(a) Same boiling point				(c) p-Nitrophenol				
		(b)	Same vapour press	ure			(d)	2, 4, 6 trinitrophenol		
		(c) Same melting point(d) Same osmotic pressure			15.	Alcohol fermentation is brought out by action of				

7.		Which of the following has highest ionisation					$CH_3 - CH = CH_2 + HI \rightarrow \dots$			
		enthalpy?				17.	Which is not a reducing sugar?			
		(a)	P	(b)	N		(a)	glucose	(b)	fructose
		(c)	Aσ	(d)	Sb		(c)	Mannose	(d)	sucrose

ž

18.	DN	NA has deoxyribose, a base and third compound					
	is.						
	(a)	ribose	(b)	phosphoric acid			
	(c)	adenine	(d)	thymine			
19.	Exa	ample of water insoluble vitamin					
20.	A c	copolymer example is					
	(a)	PMMA	(b)	Bakelite			
	(c)	Glyptal	(d)	Dacron			
21.	(a)	(a) H ₂ S is a gas while H ₂ O is liquid at room temperature. Explain?					
	(b)	HI is stronger acid t	han F	HF. Why?			
	(c)	Why is Helium used	l in d	iving apparatus?			
22.	(a)	Give the geometry of XeF ₄ and XeF ₆ ?					
	(b)		y inter halogen compounds are more ctive than halogens?				
	(c)	Why is yellow phosp	horou	us kept under water?			
23.		explain the froth floatation process of concentration f sulphide ore?					
24.	(a)	What is race racemisation?					
	(b)	Explain Gattermann	reac	tion?			
25.	(a)	(a) Define optical activity?					
	(b)	Write short note on H	offma	ann's ammonolysis?			

- 26. (a) Define inversion?
 - (b) Why chloroform stored in dark bottles?

Or

- (a) Why is thionly chloride method preferred for preparing alkyl chlorides from alcohols?
- (b) Explain Resolution?
- 27. (a) Explain Reimer-Tiemann's reaction.
 - (b) Explain why propanol has higher boiling point than that of butane.
- 28. (a) Explain Williamson's synthesis.
 - (b) Write the IUPAC name of given compound.

- 29. (a) How will you distinguish primary, secondary and tertiary alcohols by lucas test?
 - (b) Give one example of secondary alochol

Or

(a)
$$R - OH + H - CI(g) \xrightarrow{anhy ZnCl_2} R - CI + H_2O$$

- (b) $R OH + (RCO)_2 O \rightarrow RCOOR' + RCOOH$
- 30. (a) Write short note on schottky defect?

- (b) Define radius ratio. What is value of radius ratio for octahedral geometry?
- 31. (a) State Henry's law and mention some important applications.
 - (b) Define the term concentration of a solution?

Or

- (a) Define azeotropic mixture?
- (b) Molality is preferred over molarity. Why?
- 32. (a) What are essential amino acido and non-essential amino acids? Give examples.
 - (b) What is zwitter ions?
 - (c) What is gene?
- 33. (a) Differentiate between thermosetting and thermoplastic polymers.
 - (b) Write the preparation of Nylon-66 and its uses.