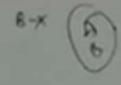
CHEMISTRY

	the resulting foul smelling product is
1.	(A) CH,NC (B) CH,NC12
2.	Ethanoic acid undergoes Hell-Volhard Zelinsky reaction but Methanoic acid don's because of (A) absence of α - H atom in ethanoic acid
	(C) higher acidic strength of ethanoic acid (D) presence of α – H atom in ethanoic acid
	The general name of the compound formed by the reaction between aldehyde and alcohol,
3.	The general name of the compound (C) Acetate (D) Acetal (A) Glycol (B) Ester (C) Acetate (D) Acetal
4.	Reaction by which benzaldehyde can not be prepared is (i) CrO_2Cl_2 in CS_2 (A) Toluene (ii) H_3O^*
	(B) Benzene + CO + HCI anhydrous AICI3
	(C) Benzoyl chloride + H_2 Δ
	(D) Benzoic acid Zn-Hg and con.HC/
	The test to differentiate between pentan-2-one and pentan-3-one is
	(A) Fehling's test (B) Baeyer's test (C) Iodoform test (D) Benedict's to

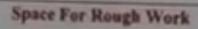
5.


- 6. A secondary amine is
 - (A) a compound with an NH₂ group on the carbon atom in number 2 position
 - (B) an organic compound with two NH2 group
 - (C) a compound in which 2 of the hydrogen of NH, have been replaced by organic groups
 - (D) a compound with two carbon atom and an NH2 group
- 7. Which of the following is correctly matched?
 - (A) Bakelite Novolac
 - (B) Nylon acrylonitrile
 - (C) Polyster tetrafluoroethene
 - (D) Teflon copralactum
- 8. Which institute has approved the emergency use of 2-deoxy-D-Glucose as additive therapy for COVID-19 patients?
 - (A) Ministry of Health and Family Welfare
 - (B) Indian Council of Medical Research
 - (C) Drug Controller General of India
 - (D) World Health Organisation
- A Nucleic acid, whether DNA or RNA gives on complete hydrolysis, two purine bases, two
 pyrimidine bases, a pentose sugar and phosphoric acid. Nucleotides which are intermediate
 products in the hydrolysis contain
 - (A) purine or pyrimidine base and ortho-phosphoric acid
 - (B) purine or pyrimidine base and pentose sugar.
 - (C) Purine or pyrimidine base, a pentose sugar and ortho-phosphoric acid
 - (D) a purine base, pentose sugar and ortho-phosphoric acid

Space For Rough Work

C-NYZ-C

R-NH-R


	Which is most VIS	of (B) Wheremen	(C)	Glycerol	(D)	Ethanol	
	The volume of 2.8 g	of CO at 27 °C and 0 (B) 0.3 litres	(C)	30 litres	(D)	0 lit. atm. K ⁻¹ mol ⁻¹) 1.5 litres	
12.	The work done when	2 moles of an ideal g K is (R = 0.0083 kJ k				mally from a volume	
	(A) 0.115 W	(B) 11.5 kJ	(C)	58.5 kJ	(D)	5.8 kJ	
13.	An aqueous solution fraction of water is	of alcohol contains	18 g of w	ater and 414	g of ethy	alcohol. The mole	
		(B) 0.1	(C)	0.9	(D)	0.4	
14.	If wavelength of pho	ton is 2.2 × 10 ⁻¹¹ m as	nd h = 6.6	× 10 ⁻³⁴ J s, th	en mom	entum of photon	
	(A) 1.452 × 10 ⁻⁴⁴		(B)	$3 \times 10^{-23} \text{ kg}$	m s-1		
	(C) 6.89 × 10 ⁻⁴³ kg		(D)	3.33 × 10 ⁻²²	kg m s ⁻¹		
		Z have atomic nu is true about them?		, 37 and 55	respecti	vely. Which of the	
	(A) Z would have the highest ionization potential.						
((B) Their ionization potential would increase with increasing atomic number.						
((C) Y would have the highest ionization potential.						
	D) Vaccould have a	on innimation materal	of herman	a those of V	n 4.72		

In oxygen and carbon molecule the bonding is

(B)
$$O_2: 1\sigma, 1\pi; C_2: 1\sigma, 1\pi$$

(D)
$$O_2: 2\sigma, 0\pi; C_2: 0\sigma, 2\pi$$

PV = nRT

V

12+16

17	(A) Ag ₂ O	(B) BeO	(C)	SnO ₂	(D) CO ₂	
	(V) 1.01	and the second	the and a	no chemically	e important ?	
18	Which property o	CO, makes it biological	(D)	Its neidie nat	urc	
100	(A) Its low solu	bility in water			and odourless nature	
	(C) Its high con	npressibility	(D)	Ha consulton		
19.	The IUPAC name	for				
8,71						
	CHC-CH,-	CH ₂ -C-O-H is				
	(A) 1-carboxybs		(B)	1-hydroxy po	entane-1, 4-dione	
	(C) 4-oxopentari		(D)	1, 4-dioxope	ntanol	
20.	I mole of HI is he HI is dissociated.	ated in a closed contained The equilibrium constant	of the	acity of 2 L. A	it equilibrium half a	mole
	(A) 0.25	(B) I	(C)	0.35	(D) 0.5	
21.	Which among the	following has highest pl	12			
	(A) 1 M H_SO ₄	(B) 1 M HC/	(C)	0.1 M NaOH	(D) 1 M NaOl	13.
22.	In which of the fol	lowing compounds, an e	lement	exhibits two o	different oxidation s	tates ?
	(A) N ₂ H ₄	(B) NH ₂ CONH ₂	(C)	N ₃ H	(D) NH ₄ NO ₃	
23.	Which of the follow	wing hydrides is electron	n deficie	ent ?		
.((A) CH ₄	(B) NaH	(C)	B_2H_6	(D) CaH ₂	
E 500		Space For I	Rough V	Vork		
ara.	1	AT.	_	≥ _ HI		カー
20	1/	-/ 91	1	2 "1	19	1
	19,0	6 20			1	
D-1	7			=[ur]	-	
11114	1	1	0	1,,,,	L 20	306171

CHI)

collegedunia a India's largest Student Review Platform

超	Space For Ro	ough W	Vork			
	(A) 6.57 atm (B) 0.34 atm	(C)	5.57 atm (D) 0.65 atm			
34.	If 3 g of glucose (molar mass = 180 g) is of pressure of the solution will be	dissolve	ed in 60 g of water at 15 °C, the osn	not		
	(A) 2 K kg/mol (B) 0.1 K kg/mol	(C)	10 K kg/mol (D) 1 K kg/mol			
33.	The rise in boiling point of a solution con 0.1 °C. The molal elevation constant of the	liquid i	is	M		
	(C) decrease of P and decrease of T	(D)	decrease of P and increase of T			
	(A) increase of P and decrease of T	(B)				
32.						
	(D) Anions cannot be accommodated in v	acant s	paces.			
	(C) There is large difference in size of cat					
	(B) Cations and anions have low co-ordin					
	(A) Cations and anions have almost equal size.					
31.		et beca	use			
	(A) 0.005 M (B) 0.004 M	(C)	0.001 M (D) 0.002 M			
30.	. The molar conductivity is maximum for the	e solution	on of concentration			
	(C) Lead - Manganese					
	(A) Zine - Mercury	(D)	Nickel - Cadmium			
29		(B)	Platinum - Palladium			
	(C) Osmotic pressure					
	(A) Depression in freezing point	(D)	Elevation in boiling point			
	and colloids with greater party	(B)	Relative lowering of vapour pressure			
21	8. Which of the following colligative propert	ies can	provide mean in	TI,		

- 35. A first order reaction is half completed in 45 min. How long does it need 99.9% of the reaction to be completed ?
 - (A) 10 Hours
- (B) 5 Hours
- (C) 20 Hours (D) 7.5 Hours

The rate of the reaction 36.

CH₂COOC₂H₂ + NsOH → CH₂COONs + C₂H₂OH is given by the equation,

Rate = K [CH3COOC2H3] [NaOH]. If concentration is expressed in mol L-1, the unit of K is

- (A) L mol⁻¹ s⁻¹ (B) mol⁻² L² s⁻¹ (C) s⁻¹
- (D) mol L-1 g-1
- Colloidal solution commonly used in the treatment of skin disease is
 - (A) Colioidal Gold

(B) Colloidal Sulphur

(C) Colloidal Antimony

- (D) Colloidal Silver
- Specific conductance of 0.1 M HNO, is 6.3 × 10⁻² ohm⁻¹ cm⁻¹. The molar conductance of 38. the solution is
 - (A) 6.300 ohm-1 cm2 mol-1
- (B) 630 ohm-1 cm2 mol-1

(C) 63.0 ohm cm2 mol-1

- (D) 315 ohm 1 cm2 mol-1
- 39. For spontaneity of a cell, which is correct?
 - (A) $\Delta G = + ve, \Delta E = + ve$

(B) $\Delta G = 0$, $\Delta E = 0$

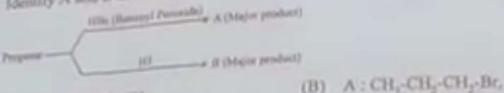
(C) AG =-ve

- (D) $\Delta G = -ve$, $\Delta E = 0$
- For no order of reaction, Half-life period is directly proportional to
 - (A) an-1
- (B) $\frac{1}{a^{n-1}}$
- (C) a¹⁻ⁿ (D) a¹⁻ⁿ
- Half-life of a reaction is found to be inversely proportional to the fifth power of its initial concentration, the order of reaction is

Space For Rough Work

- (A) 5
- (B) 3

- (C) 6
- (D) 4



U/2 d. 1

6.3×10-1

6.3×10

24. Identify A and B in the reaction

(A) A: CH₂-CH-CH₂.

B: CH, CH, CH, -I

(D) A: CH,-CH,-CH,-Br,

(C) A : CH₂-CH-CH₂, Br

в : СН,-СН-СН,

- B: CH₃-CH-CH₃
- 25. Vacant space in body centered cubic lattice unit cell is about
 - (A) 23%
- (B) 32%
- (C) 46%
- (D) 10%
- 26. How many number of atoms are there in a cube based unit cell, having one atom on each corner and 2 atom on each body diagonal of cube?
 - (A) 4
- (B) 8

- (C) 9
- (D) 6
- 27. Which of the following is NOT true about the amorphous solids?
 - (A) Amorphous solids can be moulded by heating.
 - (B) On heating they may become crystalline at certain temperature.
 - (C) They are anisotropic in nature.
 - (D) They may become crystalline on keeping for long time.

Space For Rough Work

C-CH-CH2-BY

8×1 +

2C0617K22

	Space For Re	ough W	/ork					
	(A) 6.57 atm (B) 0.34 atm	(C)	5.57 atm (D) 0.65 atm					
34.	If 3 g of glucose (molar mass = 180 g) is d pressure of the solution will be	lissolve	ed in 60 g of water at 15 °C, the osmoti					
	(A) 2 K kg/mol (B) 0.1 K kg/mol	(C)	10 K kg/mol (D) 1 K kg/mol					
33.	The rise in boiling point of a solution con 0.1 °C. The molal elevation constant of the l							
	(C) decrease of P and decrease of T	(D)	decrease of P and increase of T					
	(A) increase of P and decrease of T		increase of P and increase of T					
32.								
	(D) Anions cannot be accommodated in vi							
	(B) Cations and amons have low co-order (C) There is large difference in size of cat							
	(A) Cations and anions have almost equal (B) Cations and anions have low co-ordin	size.	umber.					
31.		et beca	use					
	(A) 0.005 M (B) 0.004 M	(C)	0.001 M (D) 0.002 M					
30	. The molar conductivity is maximum for the	solution	on of concentration					
	(C) Lead - Manganese							
	(A) Zinc - Mercury	(B) (D)	CALLED THE PARTY OF THE PARTY O					
26	. In Fuel cells are used as catalysts.	(70)	Platinum - Palladium					
	(C) Osmotic pressure	(-)						
	(A) Depression in freezing point	(B) (D)	es a Californial					
2	and colloids with greater p		provide molar mass of proteins, polymen, Relative lowering of vapour pressure					
	and the second	és can	provide molar mass of proteins, poly-					

- 35. A first order reaction is half completed in 45 min. How long does it need 99.9% of the reaction to be completed?
 - (A) 10 Hours
- (B) 5 Hours (C) 20 Hours
- (D) 7.5 Hours

36. The rase of the reaction :

CH₂COOC₂H₃ + NaOH → CH₂COONs + C₂H₄OH is given by the equation,

Rate = K [CH₂COOC₂H₂] [NaOH]. If concentration is expressed in mol L⁻¹, the unit of K is (A) L mol-1 s-1 (B) mol-2 L2 s-1 (C) s-1

- (D) mol L-1 g-1
- Colloidal solution commonly used in the treatment of skin disease is
 - (A) Colloidal Gold

(B) Colloidal Sulphur

(C) Colloidal Antimony

- (D) Colloidal Silver
- Specific conductance of 0.1 M HNO, is 6.3 × 10⁻² ohm⁻¹ cm⁻¹. The molar conductance of the solution is
 - (A) 6,300 ohm 1 cm2 mol-1
- (B) 630 ohm -1 cm2 mol-1

(C) 63.0 ohm-1 cm2 mol-1

- (D) 315 ohm-1 cm2 mol-1
- 39. For spontaneity of a cell, which is correct?
 - (A) $\Delta G = +ve$, $\Delta E = +ve$

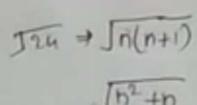
(B) $\Delta G = 0$, $\Delta E = 0$

(C) AG =-ve

- (D) $\Delta G = -vc$, $\Delta E = 0$
- 40. For no order of reaction, Half-life period is directly proportional to
 - (A) a*-1

- (B) $\frac{1}{a^{n-1}}$ (C) a^{1-n} (D) $\frac{1}{a^{1-n}}$
- Half-life of a reaction is found to be inversely proportional to the fifth power of its initial concentration, the order of reaction is
 - (A) 5
- (B) 3
- (C) 6
- (D) 4

Space For Rough Work


1/2 × 15

6-3-10-1

6.3×10

42. The strong reducing property of hypophosp	borou	ous acid is due to	
(A) two P - H bonds			
(B) its concentration			
(C) presence of phosphorus in its highest	oxida	lation state	
(D) the positive valency of phosphorus			
43. A transition metal exists in its highest oxida	ition s	state. It is expected to behave as	
(A) an oxidizing agent	(B)	a chelating agent	
(C) a reducing agent	(D)	a central metal in a co-ordination compoun	d
4. What will be the value of x in Fe**, if the ma	igneti	tic moment $\mu = \sqrt{24}$ BM 7	
(A) 0 (B) +2	(C)) +1 (D) +3	
5. Which can adsorb larger volume of hydroge	n gas	s?	
(A) Finely divided platinum	(B)) Finely divided nickel	
(C) Colloidal Fe(OH),	(D)) Colloidal solution of palladium	
. The property of halogens which is not correct	tly m	matched is	
(A) I>Br>C/>F (density)	(B)	F > C/ > Br > I (ionization enthalpy)	
(C) F>CI>Br>I (electron gain enthalpy)	(D)) F > Cl > Br > 1 (electronegativity)	
Which noble gas has least tendency to form of	compo	pounds ?	
(A) Ar (B) He	(C)	Kr (D) Ne	
(NH.) Cr.O. on heating liberates a one The			
(NH ₄) ₂ Cr ₂ O ₇ on heating liberates a gas. The	same	e gas will be obtained by	
(A) treating H ₂ O ₂ with NaNO ₂	(B)	heating NH ₄ NO ₃	
(C) treating Mg ₃ N ₂ with H ₂ O	(D)	heating NH, NO,	
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E. OF J. Dr. au	
Space For Ros	ugh W	Work	

- The major product obtained when ethanol is heated with excess of cone. H,SO, at 443 K is
 - (A) ethane
- (B) ethene
- (C) methane
- (D) ethyne
- Among the following, the products formed by the reaction of anisole with HI are: 56.
 - (A) Benzene + Methanol

(B) Phenol + Iodomethane

(C) Phenol + Methane

- (D) Sodium phenate + Methanol
- Which one of the following Chlorohydrocarbon readily undergoes solvolysis?

(B) CH₂ = CHC/

58. Identify the products A and B in the reactions :

$$R-X+AgCN \rightarrow A+AgX$$

$$R-X+KCN \rightarrow B+KX$$

- 59. An organic compound with molecular formula C,H,O dissolves in NaOH and gives a characteristic colour with FeCl₃. On treatment with bromine, it gives a tribromo derivative C,H,OBr,. The compound is

 - (A) m-Cresol (B) Benzyl alcohol (C) p-Cresol (D) o-Cresol

- 60. In Kolbes reaction the reacting substances are
 - (A) Sodium phenate and CCI,
- Sodium phenate and CO.

Phenol and CHCI,

(D) Phenol and CCI,

othe

Space For Rough Work

- The complex hexaamine platinum (IV) chloride will give _____ number of ions on ionization.
 - (A) 3
- (B) 5
- (C) 2
- (D) 4
- In the following pairs of halogen compounds, which compound undergoes faster SNI reaction 7

- 51. The only Lanthanoid which is radioactive
 - (A) Promethium (B) Lanthanum
- (C) Praseodymium (D) Cerium
- All Cu(II) halides are known, except the iodide, the reason for it is that 52.
 - (A) Cu⁺² has much more negative hydration enthalpy.
 - (B) Iodide is bulky ion.
 - (C) Cu*2 ion has smaller size.
 - (D) Cu⁺² oxidises iodide to iodine.
- 53. The correct IUPAC name of cis-platin is
 - (A) diammine dichlorido platinum (O)
- diammine dichlorido platinum (II) (B)
- (C) dichlorido diammine platinum (IV)
- (D) diammine dichlorido platinum (IV)
- Crystal Field Splitting Energy (CFSE) for [CoCl_1]4 is 18000 cm-1. The Crystal Field 54. Splitting Energy (CFSE) for [CoCl₄]2- will be
 - (A) 8000 cm⁻¹
- (B) 18000 cm⁻¹

 - (C) 10,000 cm⁻¹ (D) 16000 cm⁻¹

(UNK2NH2a) et Space For Rough Work