Directions (1-4): Read the following information carefully and answer the questions based on it. In the year 2020 there were 3 classes $8^{\text {th }}, 9^{\text {th }}$ and $10^{\text {th }}$ in a school which boys and girls study. Number of boys in $9^{\text {th }}$ class was 20% more than that of $8^{\text {th }}$ class. Number of girls in $9^{\text {th }}$ class was 50% more than that of $10^{\text {th }}$ class. The sum of total number of boys in $8^{\text {th }}$ and $9^{\text {th }}$ class and total number of girls in $9^{\text {th }}$ and $10^{\text {th }}$ class is equal to 128. Sum of boys in $8^{\text {th }}$ class and girls in $10^{\text {th }}$ class is 56 . The number of Boys in $10^{\text {th }}$ class is 17 more than the number of girls in $8^{\text {th }}$ class. Total students in all three classes are 181. 1. If in class $11^{\text {th }}$ of the same school, the number of boys is 80% of that in class $10^{\text {th }}$ and it is known that 75% of the number of boys in class $11^{\text {th }}$ is equal to 50% of the number of girls in class $11^{\text {th }}$. Find the number of girls in class $11^{\text {th }}$ is what percent of the total students in the same class.
a) 45%
b) 70%
c) 50%
d) 40%
e) 60%
2. On a certain day in $2020,25 \%$ of the total students in class $11^{\text {th }}$ of that school were absent. The ratio of boys to girls present is $11: 19$. The total number of girls enrolled in class $11^{\text {th }}$ is 65 . The number of boys who were absent is 14 more than that of girls. Then the number of students in class $11^{\text {th }}$ is what percent more or
less than the number of students in class $8^{\text {th }}$ and $9^{\text {th }}$ combined?
a) 7.69%
b) 6.25%
c) 8.33%
d) 9.09%
e) None of these
3. The number of boys in class $8^{\text {th }}$ in 2020 was 16.67% less than the boys in class $7^{\text {th }}$ in 2019. Out of all the students who appeared for the final exam in the year 2019 from class $7^{\text {th }}, 75 \%$ passed and got promoted. In 2020, class $8^{\text {th }}$ had some new admission. If the girls who took admission in $8^{\text {th }}$ in 2020 was 75% of the boys who took new admission. Then find the difference between the number of girls appearing in the final exam of class $7^{\text {th }}$ in 2019 and girls in class $10^{\text {th }}$ in 2020.
a) 14
b) 13
c) 17
d) Can't be determined
e) 12
4. If in 2020, in class $10^{\text {th }}$ some students did not attend final exams due to covid19, number of students passed the final exam is 11 less than the total students attended the exam in that class. If number of boys who didn't attend final exam is 20%, which is 75% more than number of girls who didn't attend final exam, then find
the total number of girls in class $11^{\text {th }}$ in 2021 if no other admission has done.
a) 18
b) 15
c) 12
d) 10
e) 8

Directions (5-7): Read the following information carefully and answer the questions based on it. There are total 350 students who like three different fruits apple, orange and grapes. Each students compulsorily like one or more than one fruit. The number of students liking only apple, only orange and only grapes is $18 \%, 6 \%$ and 12% respectively of total number of students. Students who like apple and orange but not grapes are $\mathrm{x} \%$, those like only orange and grapes not apple are $y \%$ and those like grapes and apple but not orange are $z \%$ of total no. of students. Also it is known that the value of x, y, z are distinct integral multiple of 10. Based on this information, solve the questions below.
5. Find the number of students liking all three fruits
a) 28
b) 21
c) 14
d) 20
e) 16
6. Find the maximum value of X i.e students liking apple and orange but not grapes?
a) 30%
b) 20%
c) 40%
d) 50%
e) 25%
7. If number of students like orange and grapes but not apple is minimum, also number of students like apple and grapes but not orange is 50% more than number of students like only apple and orange but not grapes, then find the difference between number of students like only apple and orange but not grapes and the number of students like at least 2 fruits?
a) 143
b) 121
c) 132
d) 154
e) 176

Directions (8-10): Read the following information carefully and answer the questions based on it. The pie-chart given below shows the distribution of total unsold cookies of ABC bakery on 5 days of the week. It is also known that 200 cookies are baked daily in the bakery for selling purpose. All the unsold cookies of a particular day is sold next day. On Sunday there was no unsold cookies that were carry forwarded from Saturday.
Total unsold cookies 180

Percentage of unsold cookies

\author{

20\% 10\%

 15%

 25\%

}

- Sunday
- Monday
- Tuesday

Wednesday
Thursday
8. The bakery sold 9/14 of total cookies sold on Tuesday at Rs.X each and rest of the cookies at Rs. Y each and ratio of X and Y is 2:3. If he received total amount of Rs. 1716 after selling all the cookies. Then find the amount received by selling cookies at Rs.X?
a) Rs. 954
b) Rs. 918
c) Rs. 936
d) Rs. 972
e) None of these
9. Given that the average number of cookies baked on Monday and Friday is 220. Ratio of total baked cookies and unsold cookies on Friday is $6: 1$, find the percentage of cookies sold on Friday. (Consider unsold cookies of Thursday to be carry forwarded to Friday)
a) 66.67%
b) 83.33%
c) 75%
d) 80%
e) 77.77%
10. On Sunday, 45% of the cookies baked were chocolate based, 25% cookies baked were almond based and rest was fruit cake based. If ratio of unsold cookies of chocolate, fruit cake and almond based is $2: 1: 3$, then find the number of fruit based cookies sold on Sunday.
a) 44
b) 47
c) 54
d) 51
e) 57

Directions (11-12): Read the following information carefully and answer the questions based on it.

Below data gives information about the percentage of profit generated by three sellers X, Y and Z on selling 5 articles namely A1, A2, A3, A4 and A5 whose cost price is Rs. 100 each. Note :
i) The percentage of profit generated by X is 82\%
ii) The average \% of profit earned by Y and Z together is 75%, which is 10 percentage points more than the profit percentage of Y 11. Profit (in Rs) earned by seller Z by selling $A 3+A 4+A 2$ and $A 1+A 5$ is in the ratio of 13:4. If Profit earned by selling A1 is 25 more than the profit earned by selling A5, then what is the percentage profit on A5?
a) 32.5%
b) 37.5%
c) 33.33%
d) 30%
e) 36.66%
12. If the profit earned by X on articles $A 1, A 3$, and A5 (in the same order) is in arithmetic progression with common difference of Rs. 10 and profit earned by X in A 2 is Rs. 85 then find the profit percentage earned by X by selling A 4 .
a) 70%
b) 75%
c) 78%
d) 80%
e) Can't be determined

Directions (13-14): Read the following information carefully and answer the questions based on it.
Data given here is about percentage of marks scored by A, B, C in five subjects namely $S 1, S 2$, S3, S4 and S5.

Percentage of marks scored by $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in all subjects are $86,78,82$ respectively.
Note: Maximum marks in each subject is 100 13. Average marks scored by A in $\mathrm{S} 1, \mathrm{~S} 2$ and $S 3$ is 84 and A 's score in subject $S 4$ is 10 more than that in S 5 , then find the marks scored by A in S 5 ?
a) 94
b) 96
c) 74
d) 84
e) 92
14. B scored 70% in subject S1 and B's score in subject S2 is 10 more than that in S 3 while B's
score in subject S 3 is 10 more than that in S 4 , then what percentage of marks B scored in S5?
a) 82%
b) 88%
c) 85%
d) 75%
e) Can't be determined

Directions (15-17): Read the following information carefully and answer the questions based on it.
Given table depicts the number of Doctors and Engineers in 6 cities X, Y, Z, A, B and C. Use the additional notes in order to answer the following questions

	City X	City Y	City Z	City A	City B	City C
No of doctors				110		
No. of	102					
Engineers						

Note:
i) Doctors in city X and Engineers in city Z are same
ii) Doctors in city Y and Engineers in city A are 263 together
iii) Sum of the number of doctors and engineers in city B is 290, while that in city Y is 228.
iv) Number of doctors in city B is 60 more than number of engineers in same city
v) Sum of number of doctors and engineers in cities C \& Y is 496
vi) Number of doctors in city C is 96
vii) Number of engineers in city C are 100% more than that in city Y
viii) Number of doctors in city X are 11 more than that in city Y
ix) Number of doctors in city Y are 11 more than that in city Z
15. Find the average of total number of doctors in city X, Y, A, B together
a) 155
b) 140
c) 145
d) 135
e) 130
16. If 30% of doctors from city A are cardiologists, 40% of engineers from city B are mechanical engineers, then find the difference between the sum of number of doctors (other than cardiologists) from city A and number of engineers (other than mechanical) from city B and number of engineers from city $\mathrm{X}, \mathrm{Y}, \mathrm{C}$ together.
a) 212
b) 210
c) 224
d) 204
e) None of these
17. Find the difference between total number of engineers and total persons from city $\mathrm{A}, \mathrm{B}, \mathrm{C}$ together?
a) 45
b) 40
c) 50
d) 55
e) 35

Directions (18-20): Read the following information carefully and answer the questions based on it.

Given data is about number of books contained in a library, books are either owned or issued by library.

Library	Number of books owned by library	Number of books issued by library
A	560	160
B	460	200
C	720	400
D	640	260

Note:
Books owned by library = Books issued by library + Number of books available in library 18. In library D, out of total books owned by library, 144 are in Urdu language, if 25% of number of books in Urdu language are issued by library, then number of none issued Urdu book is approximately what percentage of the book available in library D?
a) 15.25%
b) 28.42%
c) 16.5%
d) 15.77%
e) None of these
19. In library C, there are some quantitative aptitude books and reasoning books, if 20% of books removed and replaced by reasoning books, then the no. of quantitative aptitude books and the no. of reasoning books becomes equal, then find the number of quantitative aptitude books in the library.
a) 288
b) 270
c) 252
d) 216
e) Can't be determined
20. If in another library E which has only two type of books English and Hindi, total number of books is 25% less than that of A. Number of books not issued by library E is 60 less than that of library D, if number of English books in the library E is 60 less than that of Hindi books, then find the number of Hindi books not issued by library E if it issued 40 English books?
a) 140
b) 160
c) 180
d) 120
e) 200

Directions (21-23): Read the following information carefully and answer the questions based on it.
A, B, C are three cubes. Three cubes of P, Q, R of different measurement of sides are formed by cutting the sides of A, B, C respectively.

Side of P can be calculated by $x^{2}-10 x+25=0$, and difference between side of A and P is 3 cm Side of Q can be determined by $y^{2}-4 y-12=0$ and difference between side of B and that of Q is 4 cm

Side of R is calculated as $z^{2}-8 z+16=0$ and difference between side of C and that of R is 5 cm
21. Find the numerical difference between volume of cube C and total surface area of cube P
a) 512
b) 549
c) 569
d) 579
e) 729
22. Find the ratio of volume of cube Q and sum of the total surface area of cube A and R together(By taking the numerical value).
a) $20: 9$
b) $16: 9$
c) $9: 16$
d) $9: 20$
e) None of these
23. Find the sum of the volume (in cm^{3}) of all the cubes together
a) $2646 \mathrm{~cm}^{3}$
b) $2442 \mathrm{~cm}^{3}$
c) $2546 \mathrm{~cm}^{3}$
d) $2424 \mathrm{~cm}^{3}$
e) None of the above

Directions (24-26): Read the following information carefully and answer the questions based on it.
The following table shows the number of IT and HR department employees in various years.

Company	Number of IT employees in 2018	Number of HR dept employees in 2018	Transfer from IT to HR in 2019	Total number of IT employees in 2019
A	30	25	6	28
B	40	35	10	39
C	50	40	6	54

Note:

No employees left in 2018 and No new employee joined in 2019
No employee transferred to HR or IT from any other departments and vice versa
24. If 25% of HR employees from company B in 2019 are Ph.d holders, then find the difference between Ph.d and non Ph.d employees in HR.
a) 18
b) 12
c) 20
d) 16
e) 14
25. Ratio of male and female in HR from company A in 2018 and 2019 are $2: 3$ and 4:5 respectively. If 2 male employees shifted from HR to IT in 2019, then find how many male employees shifted from IT to HR in 2019?
a) 2
b) 3
C) 4
d) 5
e) 0
26. If in 2019, total employees in IT from company D is $2 / 3$ rd of employees of company C working in IT in 2019, total employees in HR from company D is 25% less than the no. of employees of company B working in HR in 2019. Find the total employees in company D in 2019?
a) 45
b) 54
c) 63
d) 56
e) 60

Directions (27-31): Read the following information carefully and answer the questions based on it.

The following bar graph shows the radius (in cm) and height (in cm) of five different cylinders.

27. By some cubes which side 2 cm is filled with cylinder A and cylinder B . Find the difference of number of cubes required to fill both the cylinders.
a) 155
b) 150
c) 145
d) 165
e) None of these
28. If cylinder C is 40% filled with water and cylinder D is 80% filled with water, then find the difference between empty volumes (in cm^{3}) of both cylinders.
a) $1920.4 \mathrm{~cm}^{3}$
b) $1930.4 \mathrm{~cm}^{3}$
c) $1940.4 \mathrm{~cm}^{3}$
d) $1950.4 \mathrm{~cm}^{3}$
e) None of these
29. Difference between diameter and height of cylinder A is what percentage more or less than difference between diameter and height of cylinder C?
a) 62.5%
b) 67.5%
c) 60%
d) 55.55%
e) 65%
30. Find the sum of total surface area
(approximately) of cylinder B and E ?
a) $3737 \mathrm{~cm}^{2}$
b) $3608 \mathrm{~cm}^{2}$
c) $3677 \mathrm{~cm}^{2}$
d) $3636 \mathrm{~cm}^{2}$
e) None of these
31. Find the average of the volume of cylinder C ,
D and E (in cm^{3})?
a) $9990 \mathrm{~cm}^{3}$
b) $9870 \mathrm{~cm}^{3}$
c) $9780 \mathrm{~cm}^{3}$
d) $9690 \mathrm{~cm}^{3}$
e) None of these

1) Answer: E

Let us take total number of boys in class $8^{\text {th }}$ be '100x'

Therefore number of boys in class $9^{\text {th }}$ be $120 x$
Let us assume total number of girls in class $10^{\text {th }}$ be ' 100 y '

Therefore number of girls in $9^{\text {th }}$ be ' $150 y$ ' It is given that,
$100 x+100 y=56$
$100 x+120 x+100 y+150 y=128$
$220 x+250 y=128$
By solving the above we get,
$x=2 / 5$
$100 x=40$
$100 y=16$
Let number of girls from class $8^{\text {th }}$ be ' a '
Therefore number of boys from class $10^{\text {th }}$ be ' $a+17$ '
$40+48+16+24+a+a+17=181$
$a=18$
All the values are tabulated as follows

Class	Numberofboys	Numberofgirls
$8^{\text {th }}$	40	18
$9^{\text {th }}$	48	24
$10^{\text {th }}$	35	16

Number of boys in class $11^{\text {th }}=80 \%$ of $35=28$
75% of boys in class $11^{\text {th }}=50 \%$ of girls in class 11th
$3(28)=2$ (number of girls in class $11^{\text {th }}$)
$42=$ number of girls in class $11^{\text {th }}$
Total students in class $11^{\text {th }}=42+28=70$
$\%$ of girls in class $11^{\text {th }}=\frac{42}{70} \times 100=60 \%$
2) Answer: A

Number of boys present in class $11^{\text {th }}$ be 11a Therefore number of girls present in class $11^{\text {th }}$ be 19a
Total students present in class $11^{\text {th }}=11 \mathrm{a}+19 \mathrm{a}$ $=30 \mathrm{a}$

Total students absents in class $11^{\text {th }}=$ $\frac{30 a}{75} \times 25=10 a$
Let number of boys absent in class $11^{\text {th }}$ be ' $b+14$ '

Therefore number of girls absent in class $11^{\text {th }}$ ' b '
Therefore,
$19 a+b=65-----$ i)
$b+b+14=10 a$
$5 a-b=7-----$ ii)
By solving the above, we get
$a=3$
Total students in class $11^{\text {th }}=40 \mathrm{a}=120$
Required percentage $=\frac{130-120}{130} \times 100=7.69 \%$

3) Answer: D

Number of boys in 2019 in class $7^{\text {th }}=$
$\frac{40}{(100-16.67)} \times 100=48$
Let number of girls in 2019 in class $7^{\text {th }}$ be ' $100 x$ '
Total students in class $7^{\text {th }}$ in $2019=48+100 x$
Number of students passed in $2019=75 \%$ of $(48+100 x)=36+75 x$
Number of new admission (boys in the year 2020) $=100 y$

Therefore, number of girls who got admission in $2020=75 \%$ of $100 y=75 y$

Total students in 2020
$36+75 x+100 y+75 y=(40+18)$
$75 x+175 y=22$

From this value required solution can't be determined

4) Answer: C

Total students who cleared class $10^{\text {th }}=(35+16)$
$-11=40$
Number of boys who didn't attend the exam = 20% of $35=7$

Number of boys attended the exam $=35-7=28$
Number of girls who didn't attend the exam = $7^{*}(100 / 175)=4$
Total number of girls who attended in class $10^{\text {th }}$ $=16-4=12$
so, total no. of students attended in class $10^{\text {th }}=$ $28+12=40$

As, total no. of attended and total no. of passed students is equal so, we can say all the girls who attended the exam passed the exam.
So, no. of girls in class 11 th in $2021=12$

5) Answer: C

Sum of any of the fruits liked by the students = 100\%

Number of students like only apple $=18 \%$
Number of students like only orange $=6 \%$
Number of students like only grapes $=12 \%$
Venn diagram for the given data is as follows,

Grapes
Percentage of students like only one fruits = 18\%+12\%+6\% =36\%

Therefore remaining (100-36) i.e64\% of students like more than one fruits

All other values are multiple of 10% If the minimum percentage is 10% then $10 \%+20 \%+30 \%=60 \%<64 \%$

All the values of (x, y, z) are multiple of 10 i.e(10\%, 20\%, 30\%)

Number of students like all the fruits $=100 \%-($
$36 \%+10 \%+20 \%+30 \%$)
= 4%
= 4% of 350
$=14$
6) Answer: A

Sum of any of the fruits liked by the students = 100\%

Number of students like only apple $=18 \%$
Number of students like only orange $=6 \%$
Number of students like only grapes $=12 \%$
Venn diagram for the given data is as follows,

Percentage of students like only one fruits = 18\%+12\%+6\% =36\%

Therefore remaining (100-36) i.e64\% of students like more than one fruits

All other values are multiple of 10%
If the minimum percentage is 10% then
$10 \%+20 \%+30 \%=60 \%<64 \%$
All the values of (x, y, z) are multiple of 10 i.e(10\%, 20\%, 30\%)

Therefore maximum possible value of percentage of students like apple and orange but not grapes $=30 \%$

7) Answer: D

Sum of any of the fruits liked by the students = 100\%
Number of students like only apple $=18 \%$ Number of students like only orange $=6 \%$ Number of students like only grapes $=12 \%$ Venn diagram for the given data is as follows,

Grapes
Percentage of students like only one fruits = 18\%+12\%+6\% =36\%
Therefore remaining (100-36) i.e64\% of students like more than one fruits
All other values are multiple of 10%
If the minimum percentage is 10% then
$10 \%+20 \%+30 \%=60 \%<64 \%$
All the values of (x, y, z) are multiple of 10
i.e(10\%, 20\%, 30\%)

Here, $\mathrm{y}=10 \%$ (minimum)
$x=20 \%$
$z=30 \%$
Required difference $=20 \% \sim(100 \%-36 \%)=$ 44% of $350=154$
8) Answer: C

Total cookies produced on each day $=200$
Total unsold cookies on Sunday $=10 \%$ of $180=$ 18
Total sold cookies on Sunday $=200-18=182$
Remaining 18 cookies sold on next day.
Total cookies produced on Monday $=200+18=$ 218

Similarly for all other days are calculated and the values are tabulated

Days	Total cookies	Number of cookies unsold	Number of cookies sold
Sunday	200	18	182
Monday	218	27	191
Tuesday	227	45	182
Wednesday	245	54	191
Thursday	254	36	218

Total cookies available for sale on Tuesday = 182
$9 / 14^{\text {th }}$ of the cookies i.e $9 / 14^{*} 182=117$ sold at Rs.x

Remaining i.e $182-117=65$ sold at Rs.y
Total revenue $=$ Rs. 1716
$117(2 a)+65(3 a)=1716$
$a=4$
Amount earned while selling the products at Rs. $X=117$ (2a) $=$ Rs. 936

9) Answer: B

Let total cookies baked on Friday $=6 x$
Number of cookies unsold on Friday $=x$
Therefore number of cookies sold on Friday $=6 x$
$-x=5 x$
Percentage of cookies sold on Friday $=$
$\frac{5 x}{6 x} \times 100=83.33 \%$

10) Answer: E

Total cookies baked on Sunday $=200$
Number of fruit based cookies baked on Sunday $=(100-45-25) \%$ of $200=30 \%$ of $200=60$
Total unsold cookies on Sunday $=18$

Total fruit based cookies unsold on Sunday = $\frac{1}{(2+1+3)}(18)=3$
Therefore,
Total fruit based cookies sold on Sunday = 60 $3=57$
11) Answer: B

It is given that,
Profit earned by seller $X=82 \%$
Average of the profits earned by seller Y and Z together $=75 \%$
Profit earned by seller $Y=75 \%-10 \%=65 \%$ Sum of the profits earned by seller Y and Z
together $=75 \% * 2=150 \%$
Therefore
Profit earned by seller Z = 150\% -65\% = 85\%
Ratio of profits earned by seller Z
$A 3+A 4+A 2$ and $A 1+A 5=13 x: 4 x$
Total profit $=17 x=85 \%$ of $500=425$
$17 x=425$
$x=25$
Total profits earned on $A 1+A 5=4 x=100$ It is given that,
$\mathrm{A} 1-\mathrm{A} 5=25$
By solving the above equations we get,
$A 5=37.5$
12) Answer: E

Total profits earned by seller $X=82 \%$ of $500=$
Rs. 410
Profit earned on article A2 $=$ Rs. 85
Profit earned on other articles
i.e $A 1+A 3+A 4+A 5=410-85=325$
$x+x+10+A 4+x+20=325$

From the above we have two unknown variable, from this equation profit percentage of article A4 can't be determined

13) Answer: D

Percentage of marks scored by $A=86 \%$
Total marks scored by $A=86 \%$ of $500=430$
Total marks scored by A in S1, S2, S3 $=84^{*} 3=$ 252

Let marks scored by A in $\mathrm{S} 4=\mathrm{x}+10$
Marks scored by A in S5 =x
$252+x++x+10=430$
$x=84$

14) Answer: E

Total marks scored by B = 390
Marks scored by B in S1 $=70 \%$ of $100=$ Rs. 70
Let marks scored by B in S2 $=x+10$
Marks scored by B in S3 $=x$
Marks scored by B in S4 $=x-10$
$70+x+x+10+x-10+S 5=390$
$3 x+55=320$
Percentage of marks scored by B in S5 can't be determined

15) Answer: C

Let number of doctors in city $\mathrm{X}=$ number of engineers in city Z be ' x '
Let number of doctors in city $Y=$ ' a '
Number of engineers in city $A=$ ' b ' $a+b=263$
Let number of engineers in city $B=y$
Therefore number of doctors in city $B=y+60$ $y+y+60=290$
$y=115$
Therefore number of doctors in city $B=175$ Number of engineers in city $\mathrm{Y}=228$-a (given)
Number of engineers in city C = 228-a+(228-
a)
= 456-2a
Total persons in city Y and $\mathrm{C}=496$
$(456-2 a)+96+a+228-a=496$
$a=142$
$142+b=263$
Number of engineers in city A i.e $\mathrm{b}=121$
Number of doctors in city $X=142+11=153$
Therefore number of engineers in city $Z=153$ All the values are tabulated.

	City X	City Y	City Z	City A	City B	City C
Doctors	153	142	131	110	175	96
Engineers	102	86	153	121	115	172

Required average $=\frac{153+142+110+175}{4}=145$

16) Answer: E

Number of doctors (other than cardiologists) from city $\mathrm{A}=70 \%$ of $110=77$
Number of engineers (other than mechanical)
from city $B=60 \%$ of $115=69$
Required difference $=[(102+86+172)-(77+69)]$ $=214$

17) Answer: B

Required difference
$=(102+86+153+121+115+172) \sim$
$(110+121+290+96+172)$
$=749 \sim 789$
$=40$
18) Answer: B

Total number of books in library $D=640$
Total number of urdu books in library D = 144 Number of urdu books not issued $=75 \%$ of 144 = 108

Number of available books in D $=640-260=380$
Required percentage $=$
$\frac{108}{380} \times 100=28.42 \%($ appro $x)$

19) Answer: E

Total books in library C = 720
After replacement total reasoning books = quantitative aptitude books = 360
20% of books removed from the library, i.e 20% of $720=144$

These 144 books are replaced with reasoning books.
The ratio of quantitative aptitude and reasoning books is not given, there number of quantitative aptitude books in the library can't be determined

20) Answer: C

Total number of books in library $\mathrm{E}=75 \%$ of 560 $=420$

Number of books not issued by library $E=(640-$ $260)-60=320$
Number of books issued by library E = 420-320 = 100
Let number of English books in library $\mathrm{E}=\mathrm{x}$
Therefore number of hindi books in library $\mathrm{E}=$ $\mathrm{x}+60$
$(x+x+60)=420$
$x=180$

Number of hindi books in library E $=180+60$ $=240$

Number of English books issued by library E = 40
Therefore number of hindi books issued $=100$ $40=60$
Number of hindi books not issued by library E = $240-60=180$

21) Answer: D

Side of P can be calculated from $x^{2}-10 x+25=0$
$x^{2}-5 x-5 x+25=0$
$x(x-5)-5(x-5)=0$
$(x-5)(x-5)=0$
$X=5,5$
Side of cube $P=5 \mathrm{~cm}$
Therefore side of cube $A=5+3=8 \mathrm{~cm}$
Side of Q can be calculated from $y^{2}-4 y-12=0$
$y^{2}-6 y+2 y-12=0$
$y(y-6)+2(y-6)=0$
$(y-6)(y+2)=0$
$Y=6,-2$ (take positive value only)
Side of cube $Q=6 \mathrm{~cm}$
Side of cube $B=6+4=10 \mathrm{~cm}$
Side of R can be calculated from $z^{2}-8 x+16=0$
$z^{2}-8 z+16=0$
$z^{2}-4 z-4 z+16=0$
$(z-4)(z-4)=0$
$Z=4 \mathrm{~cm}$
Side of cube $R=4 \mathrm{~cm}$
Therefore side of cube C $=4+5=9 \mathrm{~cm}$
Required difference $=9^{3}-6\left(5^{2}\right)$
= 729-150
$=579$

22) Answer: D

Volume of cube $Q=6^{3}=216 \mathrm{~cm}^{3}$
Total surface area of cube $A=6\left(8^{2}\right)=384 \mathrm{~cm}^{2}$
Total surface area of cube $R=6\left(4^{2}\right)=96 \mathrm{~cm}^{2}$
Sum of the total surface area of A and $R=384+$
$96=480 \mathrm{~cm}^{2}$
Required ratio
216: 480
9:20

23) Answer: A

Volumes of all the cubes together
$=5^{3}+8^{3}+6^{3}+10^{3}+4^{3}+9^{3}$
$=125+512+216+1000+64+729$
$=2646 \mathrm{~cm}^{3}$

24) Answer: A

It is given that,
In company A,
Total number of IT employees from $2018=30$
Number of HR employees from 2018 $=25$
Number of IT employees transferred to HR $=6$
Number of IT employees in 2019 (if no HR transferred to IT) = 30-6 =24
Number of HR transferred to IT = 28-24 =4
Number of HR employees in $2019=(25+6)-4=$ 27

Similarly for all other companies are calculated and the results were tabulated

$\left.$| Company | Number of
 IT
 employees
 (2018) | Number of
 HR | Number of oyees
 (2018) | IT
 employees
 (2019) |
| :--- | :--- | :--- | :--- | :--- | | HR |
| :--- |
| employees of |
| (2019) | \right\rvert\, | A | 30 | 25 | 28 | 27 |
| :--- | :--- | :--- | :--- | :--- |
| B | 40 | 35 | 39 | 36 |
| C | 50 | 40 | 54 | 36 |

Total HR employees from company B in $2019=$ 36
25% of the employeesi.e 25% of $36=9$ arePh.d holders
Remaining 27 are non Ph.d holders
Required difference $=27-9=18$
25) Answer: C

Total male employees of company A from HR in $2018=\frac{2}{5}(25)=10$
Total female employees of company A from HR in 2018 $=25-10=15$
Total male employees of company A from HR in $2019=\frac{4}{9}(27)=12$
Total female employees of company A from HR in $2019=15$
2 male employees from HR shifted to IT
Therefore number of employees in HR dept $=10$ - $2=8$

But in 2019, number of male employees are 12
Therefore 4 male members are transferred from
IT to HR
26) Answer: C

Total employees in company D in 2019
$=2 / 3$ rd of $54+75 \%$ of 36
$=36+27$
$=63$

27) Answer: D

Volume of cylinder $\mathrm{A}=\pi \mathrm{r}^{2} \mathrm{~h}=\pi(10)^{2}(14)=$ $4400 \mathrm{~cm}^{3}$

Volume of each cube $=a^{3}=2^{3}=8 \mathrm{~cm}^{3}$
Number of cubes required for cylinder A =
$\frac{\text { volumeofcylinder }}{\text { Volumeof } \mathrm{cube}}=\frac{4400}{8}=550$
Volume of cylinder B = $\pi r^{2} \mathrm{~h}=\pi(49)(20)=$ $3080 \mathrm{~cm}^{3}$

Volume of each cube $=2^{3}=8 \mathrm{~cm}^{3}$
Number of cubes required for cylinder B = 3080/8 = 385

Required difference $=550-385=165$

28) Answer: C

Required difference
$=60 \%$ of $\pi\left(14^{2}\right)(12)-20 \%$ of $\pi\left(21^{2}\right)(9)$
= 4435.2 - 2494.8
$=1940.4 \mathrm{~cm}^{3}$
29) Answer: A

Required percentage $=$
$\frac{(28-12)-(20-14)}{(28-12)} \times 100=62.5 \%$
30) Answer: C

Required sum $=2 \pi\left[(r(h+r))_{b}+(r(h+r))_{e}\right]$
$=2 \pi[(7(27))+(12(33))]$
$=3677 \mathrm{~cm}^{2}$

31) Answer: E

Volume of cylinder C $=\pi\left(14^{2}\right) 12=7392 \mathrm{~cm}^{3}$
Volume of cylinder D $=\pi\left(21^{2}\right) 9=12474 \mathrm{~cm}^{3}$
Volume of cylinder $E=\pi(12)^{2} 21=9504 \mathrm{~cm}^{3}$
Required average $=(7392+12474+9504) / 3=$ $9790 \mathrm{~cm}^{3}$

