Arithmetic progressions - Points to Remember

1. Arithmetic Progressions (A.P.):

A sequence al, a2, a3, \ldots, an, \ldots is called an arithmetic progression if there exists a constant d such that $\mathrm{a} 2-\mathrm{a} 1=\mathrm{d}, \mathrm{a} 3-\mathrm{a} 2=\mathrm{d}, \mathrm{a} 4-\mathrm{a} 3=\mathrm{d}, \ldots, \mathrm{an}+1-\mathrm{an}=\mathrm{d}$ and so on. The constant d is called the common difference.

2. General Terms of an Arithmetic Progression:

If a is the first term and d the common difference of an A.P., then the A.P. is $a, a+d, a+2 d, a+3 d, a+4 d, \ldots$

3. Properties of an Arithmetic Progression:

(i) A sequence a1, a2, a3, ... an, ... is an A.P., if ar+1-ar is independent of r.
(ii) A sequence a1, a2, a3, \ldots, an, \ldots is an A.P., if and only if its $\mathrm{n}^{\text {th }}$ term an is a linear expression in n , and in such a case the coefficient of n is a common difference.
4. nth Term of an Arithmetic progression:
(i) $n^{\text {th }}$ term an of an A.P. with the first term a and common difference d is given by an=a+(n-1)d.
(ii) $\mathrm{n}^{\text {th }}$ term from the end $=$ Last term $+(\mathrm{n}-1)(-\mathrm{d})=1-(\mathrm{n}-1) \mathrm{d}$, where 1 denotes the last term.

5. Various Terms in an AP can be Chosen in the Following Manner:

Number of terms	Terms	Common difference
3	$\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}$	d
4	$\mathrm{a}-3 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}+\mathrm{d}, \mathrm{a}+3 \mathrm{~d}$	2 d
5	$\mathrm{a}-2 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}$	d
6	$\mathrm{a}-5 \mathrm{~d}, \mathrm{a}-3 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}+\mathrm{d}, \mathrm{a}+3 \mathrm{~d}, \mathrm{a}+5 \mathrm{~d}$	2 d

6. Sum of First n Terms:

The sum of n terms of an A.P. with the first term a and the common difference d is given by $\mathrm{Sn}=\mathrm{n} 22 \mathrm{a}+\mathrm{n}-1 \mathrm{~d}$
Also, $\mathrm{Sn}=\mathrm{n} 2 \mathrm{a}+1$, where $\mathrm{l}=$ Last term $=\mathrm{a}+\mathrm{n}-1 \mathrm{~d}$

7. Properties of Sum of n Terms:

If the ratio of the sums of n terms of two A.P.'s is given, then to find the ratio of their $n^{\text {th }}$ terms, we replace n by $(2 n-1)$ in the ratio of the sums of n terms.

A sequence is an A.P. if and only if the sum of its n terms is of the form $A n 2+B n$, where A, B are constants. In such a case the common difference is 2 A .

