Polynomials - Points to Remember

1. General Form of a Polynomial:

Let x be a variable, n be a positive integer and $\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \ldots$, an be constants (real numbers). Then, $\mathrm{f}(\mathrm{x})=\mathrm{anxn}+\mathrm{an}-1 \mathrm{xn}-1+\cdots+\mathrm{a} 1 \mathrm{x}+\mathrm{a} 0$ is called a polynomial in variable x.

2. Types of Polynomials based on Degree:

The exponent of the highest degree term in a polynomial is known as its degree. A polynomial of degree 0 is called a constant polynomial. A polynomial of degree 1,2 or 3 is called a linear polynomial, a quadratic polynomial, or a cubic polynomial, respectively.

Following are the forms of various degree polynomials:

Degree	Name of the polynomial	Form of the polynomial
0	Constant polynomial	$\mathrm{f}(\mathrm{x})=\mathrm{a}$
1	Linear polynomial	$\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}, \mathrm{a} \neq 0$
2	Quadratic polynomial	$\mathrm{f}(\mathrm{x})=\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq 0$
3	Cubic polynomial	$\mathrm{f}(\mathrm{x})=\mathrm{ax} 3+\mathrm{bx} 2+\mathrm{cx}+\mathrm{d}, \mathrm{a} \neq 0$
4	Bi-quadratic polynomial	$\mathrm{f}(\mathrm{x})=\mathrm{ax} 4+\mathrm{bx} 3+\mathrm{cx} 2+\mathrm{dx}+\mathrm{e}, \mathrm{a} \neq 0$

3. Zeros of a Polynomial:

(i) A real number α is a zero of a polynomial $f(x)$, if $f(\alpha)=0$.
(ii) A polynomial of degree n can have at most n real zeros.

4. Value of a Polynomial:

If $f(x)$ is a polynomial and α is any real number, then the real number obtained by replacing x by α in $f(x)$ is known as the value of $f(x)$ at $x=\alpha$ and is denoted by $f(\alpha)$.

5. Geometrical Meaning of Zeros of a Polynomial:

Geometrically the zeros of a polynomial $f(x)$ are the x-coordinates of the points where the graph $y=f(x)$ intersects x - axis.

6. Relation between Roots and Coefficients:

(i) If α and β are the zeros of a quadratic polynomial $f(x)=a x 2+b x+c$, then
(a) $\alpha+\beta=-b a=-$ Coefficient of x Coefficient of $x 2$
(b) $\alpha \beta=\mathrm{ca}=$ Constant term Coefficient of x 2
(ii) If α, β, γ are the zeros of a cubic polynomial $f(x)=a x 3+b x 2+c x+d$, then
(a) $\alpha+\beta+\gamma=-b a=-$ Coefficient of $x 2$ Coefficient of $x 3$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha=c a=$ Coefficient of x Coefficient of $x 3$
(c) $\alpha \beta \gamma=-d a=-$ Constant term Coefficient of x 3
(iii) If $\alpha, \beta, \gamma, \delta$ are the zeros of a bi-quadratic polynomial $\mathrm{f}(\mathrm{x})=\mathrm{ax} 4+\mathrm{bx} 3+\mathrm{cx} 2+\mathrm{dx}+\mathrm{e}$, then
(a) $\alpha+\beta+\gamma+\delta=-$ ba $=-$ Coefficient of $\times 3$ Coefficient of $\times 4$
(b) $\alpha+\beta \gamma+\delta+\alpha \beta+\gamma \delta=c a=$ Coefficient of x 2 Coefficient of x 4
(c) $\alpha+\beta \gamma \delta+\alpha \beta \gamma+\delta=-$ da $=-$ Coefficient of x Coefficient of $x 4$
(d) $\alpha \beta \gamma \delta=$ ea $=$ Constant terms Coefficient of $x 4$
(e) EMBIBE

