

Polynomials - Points to Remember

1. General Form of a Polynomial:

Let x be a variable, n be a positive integer and a0, a1, a2, ..., an be constants (real numbers). Then, $f(x)=anxn+an-1xn-1+\dots+a1x+a0$ is called a polynomial in variable x.

2. Types of Polynomials based on Degree:

The exponent of the highest degree term in a polynomial is known as its degree. A polynomial of degree 0 is called a constant polynomial. A polynomial of degree 1, 2 or 3 is called a linear polynomial, a quadratic polynomial, or a cubic polynomial, respectively.

Following are the forms of various degree polynomials:

Degree	Name of the polynomial	Form of the polynomial
0	Constant polynomial	f(x)=a
1	Linear polynomial	$f(x)=ax+b, a\neq 0$
2	Quadratic polynomial	$f(x)=ax2+bx+c, a\neq 0$
3	Cubic polynomial	$f(x)=ax3+bx2+cx+d, a\neq 0$
4	Bi-quadratic polynomial	$f(x)=ax4+bx3+cx2+dx+e, a\neq 0$

3. Zeros of a Polynomial:

- (i) A real number α is a zero of a polynomial f(x), if f(α)=0.
- (ii) A polynomial of degree n can have at most n real zeros.

4. Value of a Polynomial:

If f(x) is a polynomial and α is any real number, then the real number obtained by replacing x by α in f(x) is known as the value of f(x) at $x=\alpha$ and is denoted by $f(\alpha)$.

5. Geometrical Meaning of Zeros of a Polynomial:

Geometrically the zeros of a polynomial f(x) are the x-coordinates of the points where the graph y=f(x) intersects x- axis.

6. Relation between Roots and Coefficients:

- (i) If α and β are the zeros of a quadratic polynomial f(x)=ax2+bx+c, then
 - (a) $\alpha+\beta=-ba=-$ Coefficient of x Coefficient of x2
 - (b) $\alpha\beta$ =ca= Constant term Coefficient of x2
- (ii) If α , β , γ are the zeros of a cubic polynomial f(x)=ax3+bx2+cx+d, then
 - (a) $\alpha+\beta+\gamma=-ba=-$ Coefficient of x2 Coefficient of x3
 - (b) $\alpha\beta+\beta\gamma+\gamma\alpha=ca=$ Coefficient of x Coefficient of x3
 - (c) $\alpha\beta\gamma$ =-da=- Constant term Coefficient of x3
- (iii) If α , β , γ , δ are the zeros of a bi-quadratic polynomial f(x)=ax4+bx3+cx2+dx+e, then
 - (a) $\alpha + \beta + \gamma + \delta = -ba = -$ Coefficient of x3 Coefficient of x4
 - (b) $\alpha + \beta \gamma + \delta + \alpha \beta + \gamma \delta = ca = Coefficient of x2 Coefficient of x4$
 - (c) $\alpha + \beta \gamma \delta + \alpha \beta \gamma + \delta = -da = -$ Coefficient of x Coefficient of x4
 - (d) $\alpha\beta\gamma\delta$ =ea= Constant terms Coefficient of x4

V