

JEE Main

Shift 1

Physics

Q.1. lftl	ne height of a tower	used f	or LOS communication is i	increas	ed by 21%. then percenta	ae char	nge in range is			
A) 10%	g	B)	21%	C)	19%	D)	42%			
Answer:	10%	,		- /		,				
Solution:	Solution: Range of Line of sight (LOS) communication is given by formula,									
	Range, $R = \sqrt{2h_T R_e}$									
	where, h_T is height of the tower									
	and R_e is radius of	of the e	arth							
	Let R' be the final	range	of LOS after 21% increase	e in the	height of the tower.					
	Then, the final he	ight of	tower will be $1.21h_T$.							
	So, Final range, R	$' = \sqrt{2}$	$(1.21h_T)R_e$							
	\Rightarrow $R' = 1.1R$									
	Percentage chang	je in R	is given by $rac{\Delta R}{R} imes 100 = rac{R}{R}$	$\frac{R'-R}{R}$ ×	$100 = rac{0.1R}{R} imes 100 = 10.$					
	Therefore, the $\%$	change	e in range is 10%.							
	lipole of charge 0.0 que exerted on the			aced in	an electric field of streng	th 10 d	$_{\rm yn}~{\rm C}^{-1}$. Find the maximum			
A) 4 × 1	0 ⁻⁹ N m	B)	$2\times 10^{-10}~{\rm N}~{\rm m}$	C)	$4\times 10^{-10}~{\rm N}~{\rm m}$	D)	$2\times 10^{-9}~{\rm N}~{\rm m}$			
Answer:	$4\times 10^{-10}~{\rm N}~{\rm m}$									
Solution:	The formula to cal	lculate	the maximum torque on th	e dipol	e is given by					
	$ au = qlE \dots (1)$									
	Substitute the value	ues of t	the known parameters into	equati	on (1) to calculate the ma	ximum t	orque on the dipole.			
	$ au{=}0.01~{ m C} imes 0.4~{ m m}$	$m \times \frac{1}{10}$	$\frac{1 \text{ m}}{000 \text{ mm}} \times 10 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times 100 \text{ dyn } \text{C}^{-1} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times \frac{1000 \text{ mm}}{1000 \text{ m}} \times \frac{1000 \text{ mm}}{1000 \text{ m}} \times \frac{1000 \text{ mm}}{1000 \text{ mm}} \times \frac{1000 \text{ mm}}{1000 \text{ m}} \times$	1 N 0 ⁵ dyn						
	$= 4 \times 10^{-10} \text{ N m}$									
Q.3. Tw	o bodies having sar	ne line	ar momentum have ratio o	of kineti	c energy as 16 : 9. Find the	e ratio d	of masses of these bodies.			
A) $\frac{9}{16}$		B)	$\frac{4}{3}$	C)	$\frac{3}{4}$	D)	$\frac{16}{9}$			
Answer:	$\frac{9}{16}$									
Solution:	We know that kine	etic ene	ergy (KE) of an object of n	nass (<i>m</i>	i) is related to its linear mo	omentu	m (p) as, $K\!E\!=\!rac{p^2}{2m}$			
	Given that two boo	dies ha	ve same linear momentum	n.						
	So, $m \propto \frac{1}{KE}$									
	Therefore, the rat	io of m	asses of these two bodies	is $\frac{9}{16}$.						
Q.4. Wł	nat is centre of gravi	ity of se	emi-circular disc of radius	(R)?						
A) $\frac{2R}{\pi}$		B)	$\frac{4R}{3\pi}$	C)	$\frac{R}{2}$	D)	$\frac{3R}{8}$			
Answer:	4R		0.1		-					
	$\frac{4R}{3\pi}$									

Solution: $\sigma = mass \ per \ unit \ area$

Consider an elemental semi-circular ring of radius r.

Fotal mass
$$\left(m\right) = \int \sigma dA = \int_{0}^{R} \sigma \left(\pi r dr\right) = \left[\frac{\pi \sigma}{2} \left(R^{2}\right)\right]^{2}$$

Mass of ring of radius (r) and thickness (dr)

is $dm = [\sigma \times \pi r dr]$ and its centre of mass is at $\left(\frac{2r}{\pi}\right)$

$$Y_{Cm} = \frac{1}{m} \int y dm = \frac{1}{m} \int_0^r \frac{2r}{\pi} \times \left(\sigma \pi r dr \right) = \frac{2\sigma}{m} \int_0^r r^2 dr$$
$$\Rightarrow Y_{Cm} = \frac{2\sigma}{m} \left[\frac{r^3}{3} \right]_0^R = \frac{2\sigma \left(R^3 \right)}{3 \left[\frac{\pi \sigma}{2} \left(R^2 \right) \right]}$$
$$\Rightarrow Y_{Cm} = \frac{4R}{3\pi}$$

Q.5. Pressure for polytropic process *P* varies with volume *V* as $P = aV^{-3}$, Find out the bulk modulus.

A)	3V	B)	3P	C)	Р	D)	V

Answer: 3P

Solution: The formula to calculate the bulk modulus is given by

$$B = -\frac{dP}{\frac{dV}{V}}$$
$$= -V\frac{dP}{dV} \dots (1)$$

Given that the pressure varies with volume as

$$P = aV^{-3} \dots (2)$$

Substitute the expression from equation (2) into equation (1) and simplify to obtain the bulk modulus.

$$B = -V \frac{a}{dV} \left(aV^{-3} \right)$$
$$= -aV \left(-3V^{-4} \right)$$
$$= 3aV^{-3}$$
$$= 3P$$

1 /

Q.6. The work function for two metals are 9 eV and 4.5 eV. Find the approximate difference between their threshold wavelength. (use hc = 1240 eV - nm)

 A)
 138 nm
 B)
 130 nm
 C)
 112 nm
 D)
 145 nm

Answer: 138 nm

Solution: The threshold wavelength and the work function of a metal are related by the formula

$$\lambda_{th} = \frac{hc}{\varphi} \dots (1)$$

Use equation (1) to obtain the expression for the difference in the threshold wavelengths of the two metals:

$$\lambda_{th}^{(2)} - \lambda_{th}^{(1)} = \frac{hc}{\varphi_2} - \frac{hc}{\varphi_1}$$
$$= hc \left(\frac{1}{\varphi_2} - \frac{1}{\varphi_1}\right) \dots \left(2\right)$$

Substitute the values of the known parameters into equation (2) to calculate the required difference in the threshold wavelengths.

$$egin{aligned} \lambda_{th}^{(2)} &= \lambda_{th}^{(1)} {=} 1240 \ \mathrm{eV} - \mathrm{nm} imes \left(rac{1}{4.5 \ \mathrm{eV}} - rac{1}{9 \ \mathrm{eV}}
ight) \ &pprox 138 \ \mathrm{nm} \end{aligned}$$

For the given radioactive decay $\frac{298}{94}X \rightarrow \frac{294}{92}Y + \frac{4}{2}\alpha + Q - value$, binding energy per nucleon of X, Y and α are a, b and c. Q.7. The Q – value is equal to

A)
$$294b + 4c - 298a$$
 B) $92b + 2c - 94a$ C) $294b + 4c + 298a$ D) $92b + 2c + 94a$

Answer: 294b+4c-298a

Solution: The "Q – value" of the decay, is the difference of the mass of the parent and the combined mass of the daughter and the α particle, multiplied by c^2 .

It is also equal to the difference between the sum of the binding energies of the daughter and the α -particles and that of the parent nucleus.

Therefore, Q - value = 294b + 4c - 298a

Q.8. The energy of He^+ in 2nd orbit is -13.6 eV then energy of Be^{+++} in n = 4 is

A)
$$-3.4 \text{ eV}$$
 B) -27.2 eV C) -13.6 eV D) -54.4 eV

Answer: -13.6 eV

Energy of an electron in n^{th} orbit can be written as Solution:

$$E_n = -13.6 \frac{Z^2}{n^2} \text{ eV} \dots \left(1\right)$$

Substitute the values of the known parameters for Beryllium ion into equation (1) to calculate the required energy of the ion.

$$E_4 = -13.6 imes rac{4^2}{4^2} ext{ eV} = -13.6 ext{ eV}$$

Q.9. Which of the following shows time varying magnetic field?

- A) Linearly varying electric field
- C) Antenna signal D)

Answer: Antenna signal

4

- Time varying current in the antenna produces a magnetic field by Ampere's law. Similarly, antenna signal produces a time Solution: varying magnetic field.
- Q.10. If a wire of resistance R is connected across V_0 , then power is P_0 . The wire is cut into two equal parts and connected with V_0 individually, then sum of power dissipated is P_1 , then $\frac{P_0}{P_1}$ is $\frac{1}{x}$. Find the value of x.

Answer: Solution:

We know clearly that, $P_0 = \frac{V_0^2}{R}$

Since, the wire is cut into two equal parts, the resistance is divided equally leading to resistance of $\frac{R}{2}$ for each wire.

So,

$$P_{1} = \frac{V_{0}^{2}}{\frac{R}{2}} + \frac{V_{0}^{2}}{\frac{R}{2}} = 4\frac{V_{0}^{2}}{R} = 4P_{0}$$
$$\Rightarrow \frac{P_{0}}{P_{1}} = \frac{1}{4}$$

Hence, x = 4.

A particle is performing SHM having position $x = A \cos 30^{\circ}$ and A = 40 cm. If its kinetic energy at this position is 200 J, the Q.11. value of force constant in $\left(\frac{kN}{m}\right)$ is

10 Answer:

B) Permanent magnet

Constant electric field

Solution: The formula to calculate the kinetic energy of a particle executing SHM is given by

$$K = \frac{1}{2}k\left(A^2 - x^2\right) \quad \dots \\ \begin{pmatrix} 1 \end{pmatrix}$$

where, K is the kinetic energy, k is the force constant, A is the amplitude of vibration and x is its instantaneous position. Simplify equation (1) to obtain the expression for the force constant.

$$2K = k \left(A^2 - A^2 \cos^2 30^\circ \right)$$
$$= kA^2 \left(1 - \cos^2 30^\circ \right)$$
$$= kA^2 \sin^2 30^\circ$$
$$\Rightarrow k = \frac{2K}{A^2 \sin^2 30^\circ} \dots \left(2 - \cos^2 30^\circ \right)$$

Substitute the values of the known parameters into equation (2) to calculate the required value of the force constant.

$$k = \frac{2 \times 200 \text{ J}}{(0.4 \text{ m})^2 \times \sin^2 30^{\circ}}$$

= 10000 N m⁻¹ × $\frac{1 \text{ kN}}{1000 \text{ N}}$
= 10 $\frac{\text{kN}}{\text{m}}$

Q.12. A solid sphere rolls on a horizontal plane. The ratio of angular momentum about COM to total energy is $\frac{\pi}{22}$. Find the angular speed of the sphere.

Answer:

4

Solution: The formula to calculate the moment of inertia of a solid sphere is given by

$$I = \frac{2}{5}MR^2 \quad \dots (1)$$

The angular momentum of the sphere about its centre of mass can be written as

$$L = I\omega$$

= $\frac{2}{5}MR^2\omega$... (2)

The kinetic energy of the sphere can be considered in two ways-

i) the sum of the rotational kinetic energy of the centre of mass and the translational kinetic energy of its centre of mass,

ii) the pure rotational energy of the sphere about the point of contact of the sphere with the ground.

Considering the second form of kinetic energy, the expression for it can be written as

$$K = \frac{1}{2} \left(\frac{7}{5} M R^2 \right) \omega^2$$
$$= \frac{7}{10} M R^2 \omega^2 \dots (3)$$

Divide equation (2) by equation (3) and simplify to obtain the required angular speed of the sphere.

$$\frac{L}{K} = \frac{\frac{2}{5}MR^{2}\omega}{\frac{7}{10}MR^{2}\omega^{2}}$$
$$= \frac{4}{7\omega}$$
$$\Rightarrow \frac{\pi}{22} = \frac{4}{7\omega}$$
$$\Rightarrow \omega = \frac{4\times 22}{7\pi}$$
$$= \frac{4\times 22}{7\times \frac{22}{7}}$$
$$= 4$$

Q.13. If $m = 5 \pm 0.2$ and $v = 20 \pm 0.4$, calculate percentage error in measurement of KE.

Answer:

8

Solution:

As, $KE = \frac{1}{2}mv^2$

Hence, percentage error in calculation of KE will be:

$$\begin{bmatrix} \frac{\Delta KE}{KE} \end{bmatrix} \times 100 = \left[\left[\frac{\Delta m}{m} \right] + \left[2 \frac{\Delta v}{v} \right] \right] \times 100$$
$$= \left[\frac{0.2}{5} + 2 \times \frac{0.4}{20} \right] \times 100$$
$$= 8\%$$

Chemistry

Q.14. Which of the following free radical helps in depletion of ozone layer?

A) NO B) Cl C) OH D) CH_3 .

Answer: Cl.

Solution: The free radical that helps in the depletion of the ozone layer is Cl (chlorine). Chlorine radicals are released into the stratosphere from human-made chlorofluorocarbons (CFCs) and other halogen-containing compounds. Once in the stratosphere, these chlorine radicals can react with ozone (O₃) molecules, leading to a chemical reaction that results in the depletion of ozone.

Q.15. What happens when lyophilic sol is added to lyophobic sol?

A)	Prevention from coagulation	B)	Precipitation
C)	Emulsion	D)	Electrophoresis

Answer: Prevention from coagulation

- Solution: When a lyophilic sol is added to the lyophobic sol, the lyophilic particles form a layer around lyophobic particles and thus protect the layer from electrolytes. On adding lyophilic sol to lyophobic sol lyophobic sol is protected and a film of lyophilic sol is formed over lyophobic sol.
- Q.16. In which of the following options the species changes from paramagnetic to diamagnetic and bond order increases.

Answer: $NO \rightarrow NO^+$

Solution: The mathematical formula to calculate bond order is as follows :

Bond order

 $=\frac{1}{2}\times \left(\text{number of electrons in the bonding orbitals} \right) \ - \ \left(\text{number of electrons in the antibonding orbitals} \right)$

Bond order of NO = $\frac{1}{2}(10-5) = 2.5$

Bond order of NO⁺ = $\frac{1}{2}(10-4) = 3$

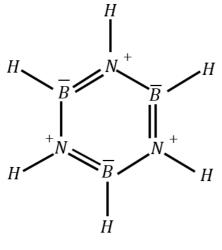
Nitric oxide is paramagnetic because of the presence of an odd electron (unpaired electron). When this electron is lost, NO^+ is formed which is diamagnetic.

Q.17. Which of the following is incorrect about Borazine?

A) It reacts with water.

B) It resembles with benzene.

C) It contains banana bond.


D) It contains coordinate bond.

Answer: It contains banana bond.

Solution: The statement "It contains a banana bond" is incorrect about Borazine.

Borazine, also known as inorganic benzene or borazole, is a chemical compound with the formula $B_3N_3H_6$. It is an inorganic analog of benzene, with boron (B) atoms replacing the carbon (C) atoms and nitrogen (N) atoms replacing the hydrogen (H) atoms in benzene. Borazine is a hexagonal planar molecule with alternating boron and nitrogen atoms, and it exhibits some structural and chemical similarities to benzene.

Borazine

Q.18. Which of the following is incorrect match?

A) Zi	inc-Liquation	B)	Cu-Electrolysis	C)	Ni-Mond's Process	D)	Ti-Van Arkel method
-------	---------------	----	-----------------	----	-------------------	----	---------------------

Answer: Zinc-Liquation

Solution: Mond's process involves the combination of carbon monoxide with nickel readily and reversibly and gives nickel tetracarbonyl. This process is used to extract and purify nickel.

The Van Arkel technique is used to refine Zirconium or Titanium. Impurities found in Zirconium or Titanium in the form of nitrogen and oxygen are eliminated using this technique.

Copper is purified by electrolysis. Electricity is passed through solutions containing copper compounds, such as copper sulphate. The anode (positive electrode) is made from impure copper and the cathode (negative electrode) is made from pure copper.

Mercury and zinc are purified by distillation method. Liquation is a metallurgical method to remove lead containing silver from copper and remove antimony minerals from ore.

Q.19. Statement-1: Permutit process is more efficient than synthetic resin method.

Statement-2: In the synthetic resin method, soluble salt of sodium is formed.

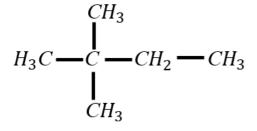
- A) Statement 1 is true and Statement 2 is false. B) Statement 1 is false and Statement 2 is true.
- C) Both statements are true. D) Both statements are false.
- Answer: Both statements are false.
- Solution: Statement 1: Nowadays hard water is softened by synthetic cationic exchangers. This method is more efficient than zeolite process/permutit process. So the given statement is wrong.

Statement 2: In synthetic resin method, sodium ions exchanges with calcium and magnesium ions present in water to make the water soft. So this statement is also wrong.

$$2\,\mathrm{RNa}\!\left(s\right) + \mathrm{M}^{2+}\!\left(\mathrm{aq}\right) \to \mathrm{R}_{2}\mathrm{M}\!\left(s\right) + 2\,\mathrm{Na}^{+}\!\left(\mathrm{aq}\right)$$

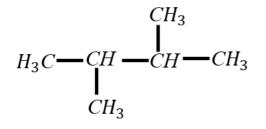
- $Q.20. \quad \mbox{An organic compound on combustion gives } 0.22 \ {\rm g} \ {\rm of} \ {\rm CO}_2, \ {\rm and} \ 0.126 \ {\rm g} \ {\rm of} \ {\rm H}_2 {\rm O}. \ \mbox{If the percentage of C in given organic compound is } 40\%, \ \mbox{the percentage of hydrogen will be? }$
- A) 8.55 B) 9.33 C) 10 D) 60

Answer: 9.33

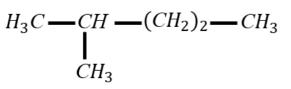

Solution:
Percentage of carbon,
$$%C = \frac{12}{44} \times \frac{0.22}{\text{Weight of sample}} \times 100$$

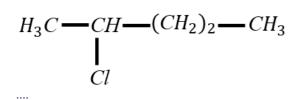
 $40 = \frac{12}{44} \times \frac{0.22}{\text{weight of sample}} \times 100$
Weight of sample= 0.15 g

The percentage of hydrogen, $\%\mathrm{H}=\frac{2}{18}\times\frac{0.126}{0.15}\times100=9.\,33\%$


Q.21. What is the major product formed in the following reaction.

$$\operatorname{CH}_3 - \left(\operatorname{CH}_2\right)_4 - \operatorname{CH}_3 \xrightarrow{\operatorname{Anhy.AlCl}_3} \operatorname{Major product}$$


A)


B)

C)

D)

Answer:

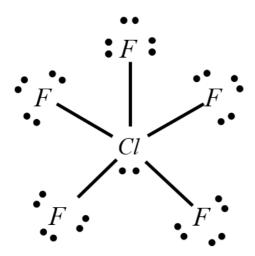
. . .

$$H_{3}C - CH - (CH_{2})_{2} - CH_{3}$$

$$\downarrow$$

$$CH_{3}$$

Solution: When n-hexane is heated with anhydrous AlCl₃ and HCl


$$CH_{3}$$

$$CH_{3}(CH_{2})_{4}CH_{3} \xrightarrow{AlCl_{3}, HCl} CH_{3} \xrightarrow{CH CH_{2}CH_{2}CH_{2}CH_{3}} CH_{3} \xrightarrow{CH CH_{2}CH_{2}CH_{2}CH_{3}} CH_{3} \xrightarrow{CH CH_{2}CH_{2}CH_{3}} CH_{3}CH_{2} \xrightarrow{CHCH_{2}CH_{3}} H_{3}CCH_{2} \xrightarrow{CHCH_{2}CH_{3}} H_{2}CH_{3}$$

$$3 - \text{methyl pantane}$$

gas in the presence of high temperature, it isomerises to give a mixture of branched chain alkanes. The presence of anhydrous aluminum chloride and hydrogen chloride gas as catalysts at high temperatures promotes the isomerization of n-hexane by facilitating the rearrangement of the carbon atoms in the hydrocarbon chain

- Q.22. CIF₅ exist in which state at room temperature?
- A) Gaseous state and square pyramidal, colorless
- C) Gaseous state and trigonal bipyramidal, colorless
- Answer: Liquid state and square pyramidal, colorless
- B) Liquid state and trigonal bipyramidal, colorless
- D) Liquid state and square pyramidal, colorless
- Solution: Chlorine pentafluoride (CIF₅) is a Colourless gas, made by reacting chlorine trifluoride with fluorine at high temperatures and high pressures. This exists in liquid state and the shape is square pyramidal.

Q.23. The pair of lanthanides with exceptionally high 3rd ionisation enthalpy than neighbouring elements:

A)	Lu and Yb	B)	Eu and Gb	C)	Eu a	and Yb	D)	Dy	and Yb
----	-----------	----	-----------	----	------	--------	----	----	--------

Answer: Eu and Yb

Solution: Europium has an atomic number of 63 and a stable electronic configuration of $[Xe] 4f^{7}6s^{2}$. When it loses three electrons to form a cation (Eu³⁺), it results in the loss of one electron from the 4f subshell, resulting in a highly stable $4f^{6}$ electron configuration, resulting in a higher ionisation enthalpy.

Ytterbium, on the other hand, has an atomic number of 70 and a stable electronic configuration of $[Xe]4f^{14}6s^2$. When it loses three electrons to form a cation (Yb³⁺), it results in the loss of three electrons from the 4f subshell, resulting in a stable 4f¹³ electron configuration, resulting in higher ionisation enthalpy.

Q.24. Match the following :

Column I	Column II
(A) Nylon-6	(1) Caprolactum
(B) Natural rubber	(2)Chloroprene
(C) Vulcanised rubber	(3) Isoprene
(D) Neoprene	(4) Sulphur containg rubber

A-1, B-3, C-4, D-2 A-4, B-3, C-1, D-2 A) B) A-1,B-2, C-4, D-3 C) D) A-2, B-3, C-4, D-1

A-1, B-3, C-4, D-2 Answer:

Solution:

Nylon 6 is produced by ring-opening chain growth polymerisation of caprolactam in the presence of water vapour and an acid catalyst at the melt.

The monomer of natural rubber is isoprene. Isoprene is produced by many plants.

Vulcanisation is a chemical process in which the rubber is heated with sulphur, accelerator and activator at 140-160°C.

Neoprene is a family of synthetic rubbers formed by chloroprene polymerisation also known as polychloroprene.

Radius of second orbit of ${\rm He^+}$ is ${\rm r_o.}$ Radius of fourth orbit of ${\rm Be^{3+}}$ is ${\rm xr_o.}$ Find ${\rm x}$? Q.25.

Answer:

2

Solution:

The formula used to calculate radius of nth orbit is $r_n = 0.529 imes \frac{n^2}{7}$

Here, n = Principal quantum number, Z = Atomic number

Radius of second orbit of He⁺, $r_{o} = 0.529 \times \frac{4}{2}$

 $m r_{o} = 0.529 imes 2$

Radius of fourth orbit of ${\rm Be^{+3}},\ {\rm r_{Be^{+3}}} = 0.529 \times \frac{4^2}{4}$

 ${\rm r_{Be^{+3}}\!=\!0.529\times 4\!=\!2r_{\circ}}$

Therefore, the value of x = 2

Q.26. For the first order reactions, the ratio of ${\rm t}_{50\%}$ and $\,{\rm t}_{87.5\%}$ will be 1~:~x. Find the value of x ?

Answer:

3 Solution:

The time for completion of the reaction and concentration of reactant relation is as follows,

$t_{x\%} = \frac{2.303}{k} \log \frac{100}{100-x}$
$t_{50\%} = \frac{2.303}{k} \log \frac{100}{50}$
$t_{87.5\%} = \frac{2.303}{k} log \ \frac{100}{12.5}$
$t_{50\%} \ : \ t_{87.5\%} = \log \ 2 \ : \ \log \ 8 = 1:3$

Therefore, for the first order reactions, the ratio of ${\rm t}_{50\%}~{\rm and}~{\rm t}_{87.5\%}$ will be 1:3

Mathematics

Q.27. Find the sum of series $2 \times 2^2 - 2 \times 3^2 + 2 \times 4^2 + \dots + (20 \text{ terms})$								
A)	462	B)	-462	C)	460	D)	-460	
Ansv	ver: -460							

Let $S = 2 \times 2^2 - 2 \times 3^2 + 2 \times 4^2 + -2 \times 21^2$ Solution: $= 2 \left(2^2 - 3^2 + 4^2 + \dots - 21^2 \right)$ $= 2 \left[\left(2^2 + 4^2 + 6^2 + 8^2 + \dots + 20^2 \right) - \left(3^2 + 5^2 + 7^2 + \dots + 21^2 \right) \right]$ $= 2 \left[2 \left(2^2 + 4^2 + 6^2 + 8^2 + \ldots + 20^2 \right) - \left(2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + \ldots + 20^2 + 21^2 \right) \right]$ $= 2 \left[2 \left(2^2 + 4^2 + 6^2 + 8^2 + \ldots + 20^2 \right) - \left(1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + \ldots + 20^2 + 21^2 \right) + 1^2 \right]$ $= 2 \left[2^3 \left(1^2 + 2^2 + 3^2 + 4^2 + \ldots + 10^2 \right) - \left(1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + \ldots + 20^2 + 21^2 \right) + 1^2 \right]$ We know that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{c}$ $= 2 \left[2^3 \left(\frac{10(10+1)(2 \times 10+1)}{6} \right) - \left(\frac{21(21+1)(2 \times 21+1)}{6} \right) + 1^2 \right]$ $= 2 \left[8 \times \frac{10 \times 11 \times 21}{6} - \frac{21 \times 22 \times 43}{6} + 1 \right]$ = 2 [3080 - 3311 + 1]=2[-230] = -460Therefore, the sum of the required series is -460Q.28. The number of seven digit numbers using 1, 2, 3, 4 whose sum of digits is 12 is A) 413 B) 311 C) 308 D) 393 413 Answer: Solution: The given numbers are 1, 2, 3, 4 and sum of digits should be 12. Case 1 : $\underline{4}$ $\underline{3}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$, Here the sum of the digits is 12. The number of ways arranging them is $=\frac{7!}{5!}=42$. Case 2: <u>4 2 2 1 1 1 1</u>. The number of ways arranging them is $=\frac{7!}{2!4!}=105$ Case 3: <u>3 2 2 2 1 1 1</u>. The number of ways arranging them is $=\frac{7!}{3!3!}=140$ Case 4: <u>3 3 2 1 1 1 1</u>. The number of ways arranging them is $=\frac{7!}{2!4!}=105$ Case 4: 2 2 2 2 2 1 1 The number of ways arranging them is $=\frac{7!}{5!2!}=21$ The total number of ways are = 42 + 105 + 140 + 105 + 21= 413Therefore, the required answer is 413. Q.29 If $rac{\mathrm{d}\,y}{\mathrm{d}\,x}=y+7$ and $y\left(0
ight)=0,$ then the value of $y\left(1
ight)$ is B) 2(e-1)C) None of these A) 7(e-1)7eD) Answer: 7(e-1)

Given that
$$\frac{\mathrm{d} y}{\mathrm{d} x} = y + 7$$

$$\Rightarrow rac{dy}{y+7} = dx$$

Now integrate on both sides of the equation.

$$\Rightarrow \int \frac{dy}{y+7} = \int dx$$

$$\Rightarrow \ln |y+7| = x + c$$

But $y(0) = 0$
$$\Rightarrow \ln |0+7| = 0 + c$$

Let us find $y(1)$.
$$\Rightarrow \ln |y+7| = 1 + \ln |7|$$

$$\Rightarrow \ln |y+7| = \ln |7e|$$

$$\Rightarrow y + 7 = 7e$$

$$\Rightarrow y(1) = 7(e-1)$$

Therefore, the required answer is $7 \left(e - 1 \right)$

Q.30. Consider:

> Statement $1: n \rightarrow \infty \frac{1}{n^2} (1+2+3+\ldots+n) = 1$ Statement 2: $n \to \infty \frac{1}{n^{16}} \left(1^{15} + 2^{15} + 3^{15} + \ldots + n^{15} \right) = \frac{1}{16}$

A) Both statements 1 and 2 are true.

C) Statement 1 is true and 2 is false

Statement 1 is false and 2 is true Answer:

Solution: Statement 1:

$$\begin{split} \lim_{n \to \infty} \frac{1}{n^2} (1 + 2 + 3 + \ldots + n) \\ &= \lim_{n \to \infty} \left(\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \ldots + \frac{n}{n} \right) \frac{1}{n} \\ &= \lim_{n \to \infty} \left(\sum_{r=1}^n \left(\frac{r}{n} \right) \right) \frac{1}{n} \\ &= \int_0^1 x dx = \left[\frac{x^2}{2} \right]_0^1 = \frac{1}{2} \end{split}$$

Statement 2:

$$\begin{split} \lim_{n \to \infty} \frac{1}{n^{16}} \left(1^{15} + 2^{15} + 3^{15} + \ldots + n^{15} \right) \\ &= \lim_{n \to \infty} \left(\left(\frac{1}{n} \right)^{15} + \left(\frac{2}{n} \right)^{15} + \left(\frac{3}{n} \right)^{15} + \ldots + \left(\frac{n}{n} \right)^{15} \right) \frac{1}{n} \\ &= \lim_{n \to \infty} \left(\sum_{r=1}^{n} \left(\frac{r}{n} \right)^{15} \right) \frac{1}{n} \\ &= \int_{0}^{1} x^{15} dx = \left[\frac{x^{16}}{16} \right]_{0}^{1} = \frac{1}{16} \end{split}$$

Q.31. If $3f(x) + 2f\left(\frac{1}{x} \right) = \frac{1}{x} - 10$, then $f(3) =$
A) 2 B) -3 C)

Answer: -3

A)

B) Both statements 1 and 2 are false.

D) Statement 1 is false and 2 is true

-4

D) None of these

Q.32.

 $\begin{aligned} 3f(x) + 2f\left(\frac{1}{x}\right) &= \frac{1}{x} - 10 \quad \dots (1) \\ \text{Replace } x \to \frac{1}{x} \\ 3f\left(\frac{1}{x}\right) + 2f(x) &= x - 10 \quad \dots (2) \\ \text{Eliminating } f\left(\frac{1}{x}\right) \text{ from } (1) \& (2) \text{, we get} \\ &\Rightarrow 5f(x) &= \frac{3}{x} - 2x - 10 \\ \text{Let us replace } x \text{ with } 3 \\ &\Rightarrow 5f(3) &= \frac{3}{3} - 2(3) - 10 \\ &\Rightarrow f(3) &= -3 \\ \text{Therefore, the required answer is } -3 \\ \text{Maximum value of } f(x) &= x - \sin 2x + \frac{1}{3} \sin 3x \text{ in } [0, \pi] \text{ is} \end{aligned}$

A)
$$\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3}$$

A) $\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{3}$
Answer: $\frac{5\pi}{6} + \frac{\sqrt{3}}{2} + \frac{1}{2}$
B) 0
C) $\frac{5\pi}{6} - \frac{\sqrt{3}}{2} + \frac{1}{3}$
D) $\frac{5\pi}{6} + \frac{\sqrt{3}}{2} - \frac{1}{3}$

$$\begin{aligned} f(x) &= x - \sin 2x + \frac{1}{3} \sin 3x \\ \Rightarrow f'(x) &= 1 - 2(2\cos^2 x - 1) + 4\cos^3 x - 3\cos x \\ \Rightarrow f'(x) &= 1 - 2(2\cos^2 x - 1) + 4\cos^3 x - 3\cos x \\ \Rightarrow f'(x) &= 0 = 2 + 2(\cos^2 x - 3) \end{aligned}$$
For critical points,

$$\begin{aligned} f'(x) &= 0 \\ \Rightarrow (\cos x - 1) \left(4\cos^2 x - 3\right) &= 0 \\ \Rightarrow (\cos x - 1) \left(4\cos^2 x - 3\right) &= 0 \\ \Rightarrow (\cos x - 1) \left(4\cos^2 x - 3\right) &= 0 \\ \Rightarrow \cos x - 1, \ \pm \frac{\sqrt{3}}{2} \\ \Rightarrow x &= 0, \ \frac{\pi}{6}, \ \frac{5\pi}{6} \\ \text{And,} \\ f''(x) &= 4\sin 2x - 12\cos^2 x \sin x + 3\sin x \\ \text{Now.} \\ f''(x) &= 4\sin 2x - 12\cos^2 x \sin x + 3\sin x \\ \text{Now.} \\ f''(x) &= 4\sin 2x - 12\cos^2 x \sin x + 3\sin x \\ \text{Now.} \\ f''(x) &= 4\sin 2x - 12\cos^2 x \sin x + 3\sin x \\ \text{Now.} \\ f''(x) &= 4\sin 2x - 12\cos^2 x \sin x + 3\sin x \\ \text{Now.} \\ f''(x) &= 4\sin (\frac{\pi}{3}) + \frac{1}{3}\sin (\frac{\pi}{2}) \\ \Rightarrow f''(\frac{\pi}{6}) &= \frac{5\pi}{6} - \sin(\frac{\pi}{3}) + \frac{1}{3}\sin(\frac{\pi}{2}) \\ \Rightarrow f''(\frac{\pi}{6}) &= \frac{5\pi}{6} - \sin(\frac{\pi}{3}) + \frac{1}{3}\sin(\frac{\pi}{2}) \\ \Rightarrow f(\frac{5\pi}{6}) &= \frac{5\pi}{6} + \frac{5\pi}{6} + \frac{5\pi}{3} + \frac{1}{3} \\ \text{C3.3.} \quad \text{if } \frac{dy}{dx} = 6e^x + e^{2x} + e^{3x}, \text{ then } y(2 - y(0) \text{ is } \\ \text{A)} &= 6e^2 + \frac{1}{2}e^4 + \frac{1}{3}e^6 - \frac{41}{6} \\ \text{C1.5.} \quad \text{Given:} \\ \frac{dy}{dx} &= 6e^x + e^{2x} + e^{3x} \\ \Rightarrow dy &= (6e^x + e^{2x} + e^{3x}) dx \\ &= y - 6e^x + \frac{1}{2}e^{2x} + \frac{1}{3}e^6 + C - (6 + \frac{1}{2} + \frac{1}{3} + C) \end{aligned}$$

Solution:

Given:

 $\Rightarrow y(2) - y(0) = 6e^{2} + \frac{1}{2}e^{4} + \frac{1}{3}e^{6} - \frac{41}{6}$

If $\vec{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\vec{b} = 3\hat{i} + 3\hat{j} + 7\hat{k}$, $\vec{c} = 7\hat{i} + 8\hat{j} + 9\hat{k}$ and $\vec{a} \times \vec{b} = \vec{c} + \vec{d}$ then $\left|\vec{d}\right|$ is Q.34. B) $8\sqrt{2}$ $\sqrt{194}$ C) $\sqrt{168}$ A) D) $5\sqrt{5}$ Answer: $\sqrt{194}$ Given that $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\overrightarrow{b} = 3\hat{i} + 3\hat{j} + 7\hat{k}$, $\overrightarrow{c} = 7\hat{i} + 8\hat{j} + 9\hat{k}$ Solution: Let us find $\overrightarrow{a} \times \overrightarrow{b}$. $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 2 & 2 & 7 \end{vmatrix}$ $=(21-15)\hat{i}-(14-15)\hat{j}+(6-9)\hat{k}$ $=6\hat{i}+\hat{j}-3\hat{k}$ But $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} + \overrightarrow{d}$ $\Rightarrow 6\hat{i} + \hat{j} - 3\hat{k} = 7\hat{i} + 8\hat{j} + 9\hat{k} + \overrightarrow{d}$ $\Rightarrow \overrightarrow{d} = -\hat{i} - 7\hat{j} - 12\hat{k}$ $\Rightarrow \left| \overrightarrow{d} \right| = \sqrt{\left(-1 \right)^2 + \left(-7 \right)^2 + \left(-12 \right)^2} = \sqrt{194}$ Therefore, the required answer is $\sqrt{194}$ The integral $\int_0^\infty \frac{6}{e^{3x}+6e^{2x}+11e^x+6}dx$ equals Q.35. $\log_e\left(\frac{32}{27}\right)$ B) $\log_e\left(\frac{32}{n}\right)$ C) $\log_e\left(\frac{16}{27}\right)$ D) $\log_e\left(\frac{32}{2}\right)$ A) $\log_e\left(\frac{32}{27}\right)$ Answer: Solution: Let $I = \int_0^\infty \left(\frac{6}{e^{3x} + 6e^{2x} + 11e^x + 6} \right) dx$ $\Rightarrow I = \int_0^\infty \frac{6}{(e^x + 1)(e^x + 2)(e^x + 3)} dx$ Using partial fraction, we can write $\Rightarrow I = 6 \int_0^\infty \left[\frac{1}{2(e^{x+1})} - \frac{1}{(e^{x+2})} + \frac{1}{2(e^{x+3})} \right] dx$ $\Rightarrow I = 6 \int_0^\infty \left[rac{1}{2(e^{-x}+1)} - rac{1}{(1+2e^{-x})} + rac{1}{2(1+3e^{-x})}
ight] e^{-x} dx$ $\Rightarrow I = 6 \left[-\frac{1}{2} \log_e \left(e^{-x} + 1 \right) + \frac{1}{2} \log_e \left(e^{-x} + 2 \right) - \frac{1}{6} \log_e \left(e^{-x} + 3 \right) \right]_0^{\infty}$ $\Rightarrow I = 6 \left[0 - \left\{ -\frac{1}{2} \log_e 2 + \frac{1}{2} \log_e 3 - \frac{1}{6} \log_e 4 \right\} \right]$

 $\Rightarrow I = 3 \log_e 2 - 3 \log_e 3 + \log_e 4$ $\Rightarrow I = 5 \log_e 2 - 3 \log_e 3$

$$\Rightarrow I = \log_e\left(\frac{32}{27}\right)$$

Q.36. Remainder when 2^{2022} is divided by 15 is equal to

Answer:

4

Solution: We know that,

 $(1+x)^n = 1 + {}^nC_1x + {}^nC_2x^2 + \dots {}^nC_nx^n$

Now rewriting 2^{2022} as $2^{2022} = \left(2^8\right)^{252} \times 2^6 = (255+1)^{252} \times 2^6$

Now $(1+255)^{252} = 1 + {}^{252}C_1 255 + {}^{252}C_2 255^2 \dots + {}^{252}C_{252} 255^{252}$

So, when $(1+255)^{252}$ is divided by 15 remainder will be 1 as 255 is divisible by 15,

Now $(255 + 1)^{252} \times 2^6$ when divided by 15 will give the remainder as $2^6 = 64$, now again 64 divided by 15 will give the remainder as 4,

Hence, 2^{2022} when divided by 15 gives the remainder as 4

Q.37. Let the number of matrices of order 3×3 are possible using the digits $\{0, 2, 3, \dots, 10\}$ is m^n , then m + n is

Answer: 20

Solution: For 3×3 matrices, we must have matrix of the form

$$egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}$$

Now each element of matrices can be filled with 11 numbers from 0 to 10,

So, Number of matrices $= 11^9$

So, m = 11, n = 9

m+n=20

Q.38. If $g(x) = \sqrt{x+1}$ and $f(g(x)) = 3 - \sqrt{x+1}$ then $f(0) = 3 - \sqrt{x+1}$

Answer:

Solution: Given,

3

 $g(x) = \sqrt{x+1} \text{ and } f(g(x)) = 3 - \sqrt{x+1}.$ $\Rightarrow g(-1) = \sqrt{-1+1} = 0$ Now $f(g(-1)) = 3 - \sqrt{-1+1}$ $\Rightarrow f(0) = 3$ Therefore, the value of f(0) is 3.

Q.39. Let there be 10 A.P's whose first term are (1, 2, 3, ..., 10) respectively and common differences are (1, 3, 5, ...) respectively and S_i denotes the sum of 10 terms of i^{th} A.P, then $\sum_{i=1}^{10} S_i$ is

Answer: 5050

Solution: Given,

First term of A.P are 1, 2, 3...10, so general term of the first term will be *i* And common difference are 1, 3, 5, ..., so general term of common difference is given by 2i - 1Now sum of the A.P is given by, $S_i = \frac{10}{2} [2 \times i + (10 - 1)(2i - 1)]$

$$\begin{split} S_i &= -\frac{1}{2} \left[2 \times i + (10 - 1)(2i - 1) \right] \\ \Rightarrow S_i &= 5 \left[2 \times i + 9 \left(2i - 1 \right) \right] \\ \Rightarrow S_i &= 100i - 45 \\ \text{So, } \sum_{i=1}^{10} S_i &= \sum_{i=1}^{10} 100i - 45 \sum_{i=1}^{10} 1 \\ \Rightarrow \sum_{i=1}^{10} S_i &= 100 \left(\frac{10 \times 11}{2} \right) - 45 \times 10 \\ \Rightarrow \sum_{i=1}^{10} S_i &= 100 \left(55 \right) - 45 \times 10 \\ \Rightarrow \sum_{i=1}^{10} S_i &= 5050 \end{split}$$