

JEE Main 2023 (Session 2)

April 8 Shift 1

Physics

Q.1. For an electron and a proton $(m_p = 1847 m_e)$ with same de-Broglie wavelength, the ratio of linear momentum is equal to:

A) 1:2 B) 2:1847 C) 1:1 D) $\sqrt{1847}:1$

Answer: 1:1

Solution: The de-Broglie's equation is given by,

 $\lambda = \frac{h}{p}.$

The above equation is relating the linear momentum (p) of a particle with its de-Broglie wavelength (λ) .

It is given that the de-Broglie wavelength of electron and proton is same.

Hence, the ratio of linear momentum is 1:1.

- Q.2. If the weight of an object on earth's surface is 400 N, then weight of the same particle at a depth $\frac{R}{2}$ from surface would be (*R* is radius of earth)
- A)
 100 N
 B)
 300 N
 C)
 200 N
 D)
 250 N

Answer: 200 N

Solution: The formula to calculate the variation of the acceleration due to gravity with depth can be written as

$$g' = g\left(1 - \frac{d}{R}\right) \quad \dots \left(1\right)$$

Substitute the value of d into equation (1) to obtain the acceleration due to gravity at the given depth.

$$g' = g\left(1 - \frac{\frac{R}{2}}{R}\right)$$
$$= \frac{g}{2}$$

As, the acceleration due to gravity is halved, the weight of the object will also be halved.

Hence, the weight of the object at the given depth is 200 N.

Q.3. Two forces of magnitude A and $\frac{A}{2}$ act perpendicular to each other. The magnitude of the resultant force is equal to

A)
$$\frac{A}{2}$$
 B) $\frac{\sqrt{5}A}{2}$ C) $\frac{3A}{2}$ D) $\frac{5A}{2}$

Answer: $\frac{\sqrt{5}A}{2}$

Solution: Since, the vectors act perpendicularly to each other, the angle between them is 90°.

The magnitude of the resultant (R) of the vectors, using Pythagoran theorem, be calculated as follows-

 $R^{2} = A^{2} + \left(\frac{A}{2}\right)^{2}$ $= \frac{5A^{2}}{4}$ $\Rightarrow R = \frac{\sqrt{5}A}{2}$

Q.4. Two projectiles are thrown at speed 40 m s^{-1} and 60 m s^{-1} at angles 30° and 60° respectively. Find the ratio of their ranges.

A) 4:9 B) 1:1 C) 2:3 D) 4:3

Answer: 4:9

Solution: The formula to calculate the horizontal range of a projectile is given by

$$R = \frac{u^2 \sin 2\theta}{g} \quad \dots \left(1\right)$$

Substitute 40 m s⁻¹ for u and 30° for θ into equation (1) to obtain the range (R_1) of the first particle.

$$R_1 = \frac{40^2 \sin 60^\circ}{g}$$
$$= \frac{800\sqrt{3}}{g} \dots \left(2\right)$$

Similarly, substitute 60 m s^{-1} for u and 60° for θ into equation (1) to obtain the range (R_2) of the second particle.

$$R_2 = \frac{\frac{60^2 \sin 120^\circ}{g}}{=\frac{1800\sqrt{3}}{g}} \dots \left(3\right)$$

_

Divide equation (2) by equation (3) to calculate the required ratio of the ranges.

$$\frac{\frac{R_1}{R_2}}{\frac{1}{R_2}} = \frac{\frac{1}{\frac{g}{\frac{1800\sqrt{3}}{g}}}}{\frac{1800\sqrt{3}}{g}}$$
$$= \frac{4}{9}$$

Hence, ratio of their ranges is 4:9.

Q.5. An air bubble having volume 1 cm^3 at depth 40 m inside water comes to surface. What will be the volume of the bubble at the surface?

A)	5 cm^3	$B) 2 \ \mathrm{cm}^3$	C) 4 cm^{3}	D) 3 cm^3
----	------------------	-------------------------	-----------------------	---------------------

Answer: 5 cm^3

Solution: The pressure at the surface of water is the same as the atmospheric pressure. So, the pressure at the surface of water is given by

 $P_2=1$ atm = 10⁵ Pa

The pressure (P_1) at a depth of 40 m below the surface of water can be calculated as follows-

 $P_1 = P_2 + h\rho g \dots (1)$

Substitute the values of the parameters into equation (1) to calculate the initial pressure on the bubble below the surface.

$$egin{aligned} P_2 &= 10^5 \ \mathrm{Pa} + (40 \ \mathrm{m}) imes \left(10^3 \ \mathrm{kg} \ \mathrm{m}^{-3}
ight) imes \left(10 \ \mathrm{m} \ \mathrm{s}^{-2}
ight) \ &= 5 imes 10^5 \ \mathrm{Pa} \end{aligned}$$

Hence, the final volume of the bubble at the surface can be calculated as follows(temperature will remain constant):

$$P_1V_1 = P_2V_2$$

$$\Rightarrow V_2 = \frac{P_1V_1}{P_2}$$

$$= \frac{5 \times 10^5 \text{ Pa} \times 1 \text{ cm}^3}{10^5 \text{ Pa}}$$

$$= 5 \text{ cm}^3$$

Hence, volume of the bubble at the surface is $5\ {\rm cm}^3.$

Q.6.	The height of antenna is	s 98 m.	The radius of Earth is 640	00 km.	The area up to which it will	transr	nit signal is:
A)	3642 km^2	B)	3942 km ²	C)	11200 km^2	D)	$22400\ \rm km^2$

Answer: 3942 km^2

Solution: Range of Line of sight (LOS) communication is given by formula,

Range, $R = \sqrt{2h_T R_e}$

where, h_T is height of the tower

and R_e is radius of the earth.

The area (*A*) covered by the antenna $= \pi R^2$

$$egin{aligned} &4 = 2\pi R_e h_T \ &= 2 imes 3.14 imes 6400 imes \left(rac{98}{1000}
ight) \ &= 3938.8 pprox 3942 \ \mathrm{km}^2 \end{aligned}$$

Q.7. If mass, radius of cross-section and height of a cylinder are (0.4 ± 0.01) g, (6 ± 0.03) m and (8 ± 0.04) m. The maximum percentage of error in the measurement of density of cylinder is

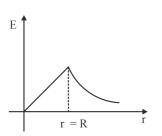
Answer: 4%

2

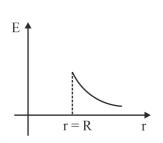
Solution: The formula to calculate the density (ρ) of the material of a cylinder can be written as

$$\rho = \frac{m}{\pi r^2 h} \quad \dots \left(1\right)$$

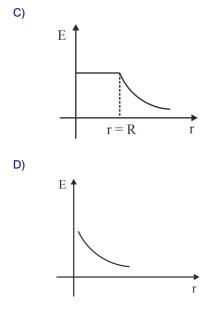
Hence, the percentage error in measuring the density of the material of the cylinder is given by

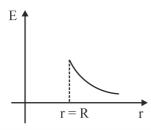

$$\frac{\Delta\rho}{\rho}\% = \left[\left(\frac{\Delta m}{m} + 2\frac{\Delta r}{r} + \frac{\Delta h}{h}\right) \times 100 \right]\% \quad \dots (2)$$

Substitute the given values of the respective error in measuring individual parameters and their original values into equation (2) to calculate the percentage error in measuring the density.


$$egin{array}{l} \displaystyle rac{\Delta
ho}{
ho} \% &= \ \left[\left(rac{0.01}{0.4} + 2 imes rac{0.03}{6} + rac{0.04}{8}
ight) imes 100
ight] \% \ &= \left[(0.025 + 0.01 + 0.005) imes 100
ight] \% \ &= 4\% \end{array}$$

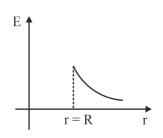
Q.8. The graph showing the variation of electric field (E) with the distance (r) from the centre of a conducting spherical shell is -


A)


B)

Answer:

Solution: For a conducting spherical shell, the total charge resides on its surface.


The electric field inside the shell will be zero as charge enclosed by the shell is zero. As one moves away from the surface of the spherical shell, the electric field varies according to the following formula:

$$E(r)=\;k\frac{Q}{r^2}$$

where, k is Coulomb's constant.

Thus, starting from the centre of the shell, the electric field remains zero up to r = R and beyond this point, the electric field is inversely proportional to the square of the distance.

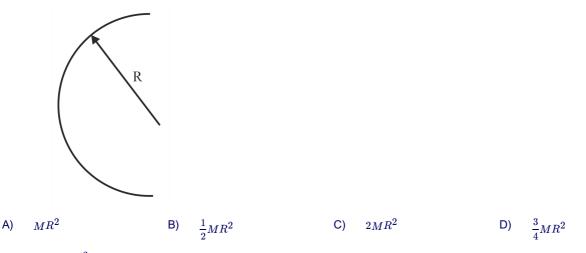
Hence,

Q.9. An atom of atomic mass 242, having binding energy per nucleon 8.4 MeV, breaks into two atoms of atomic mass 121 each (with binding energy per nucleon 7.1 MeV). Find the absolute Q value of the reaction.

A)	$150 \mathrm{MeV}$	B)	314.6 MeV	C)	$208.4 \mathrm{MeV}$	D)	$290.8 \mathrm{MeV}$
----	--------------------	----	-----------	----	----------------------	----	----------------------

Answer: 314.6 MeV

Solution: The formula to calculate the *Q*-value of the given reaction can be written as


 $Q = M_m E_m - n M_d E_d \dots (1)$

where, M, E represent the atomic mass and the binding energy respectively. The subscripts m, d represent the mother and daughter atoms respectively. Also, n represents the number of emitted daughter atoms in the reaction.

Substitute the values of the known parameters into equation (1) to calculate the required Q-value of the reaction.

 $Q=242\times8.4~\mathrm{MeV}-2\times121\times7.1~\mathrm{MeV}$ $=314.6~\mathrm{MeV}$

Q.10. The moment of inertia of semi-circular ring of mass M and radius R about an axis passing through centre and perpendicular to the plane of ring is

Answer: MR^2

Solution: The formula to calculate the moment of inertia (I) of a ring having mass M and radius R about an axis passing through its centre perpendicularly is given by

 $I = MR^2 \dots (1)$

Here, the mass of the semi-circular ring is given as M. So, the total mass of the entire ring would be 2M.

If it were asked to find the moment of inertia of the entire ring, then the answer should be, according to equation (1), $2MR^2$.

But, as in this case, it is asked to find the moment of inertia of the semi-circular ring, then answer should be MR^2 .

Q.11. The dimension of
$$\frac{1}{\mu_0 \varepsilon_0}$$
 is

A) MLT^{-1} B) M^0LT^{-2} C) ML^2T^{-1} D) $M^0L^2T^{-2}$

Answer: $M^0L^2T^{-2}$

Solution: We know the relation, $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$

So,
$$c^2 = \frac{1}{\mu_0 \varepsilon_0}$$

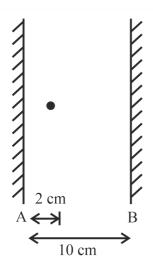
As the unit of c is m s⁻¹, so the dimensional formula for c is M^0LT^{-1} .

Hence, the dimensional formula for c^2 is $M^0L^2T^{-2}$

- Q.12. In an LC oscillating circuit with L = 75 mH and $C = 30 \mu\text{F}$, the maximum charge of capacitor is $2.7 \times 10^{-4} \text{ C}$. Maximum current through the circuit will be
- A)
 0.18 A
 B)
 0.24 A
 C)
 0.72 A
 D)
 0.92 A

Answer: 0.18 A

Solution: The formula for calculating the maximum current through the LC oscillating circuit is given by, $i_{max} = q_0 \omega$ ---(i) Where, q_0 is maximum charge on the capacitor

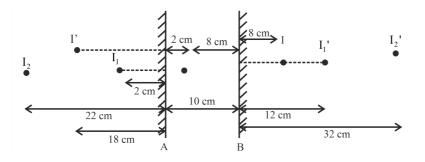

and ω is the angular frequency of oscillation.

We also, know that for LC oscillating circuit,
$$\omega=rac{1}{\sqrt{LC}}$$
 ---(ii)

Substituting (ii) in (i), we get

$$i_{max} = rac{q_0}{\sqrt{LC}} = rac{2.7 imes 10^{-4}}{\sqrt{75 imes 10^{-3} imes 30 imes 10^{-6}}} = 0.18 \text{ A}$$

Q.13. In the given diagram, find the distance (in cm) between 2nd and 3rd image formed on the left side of mirror A.



Answer:

4

Solution: In a plane mirror, regular reflection occurs. The image formed by a plane mirror must be virtual and has the same distance from the mirror as the object does.

Let's consider the following schematic of the image formation by the two mirrors.

Considering the image formation started at mirror A at first, the first image is formed at position I_1 behind it. Considering I_1 as object and reflection at mirror B, an image is formed at I_1 ' behind mirror B. Similarly, the next image is formed at I_2 behind mirror A.

Now, considering the image formation started at mirror B first, the first image is formed at I behind it. Considering I as object, its image is formed at I' behind mirror A.

Hence, from the diagram, the distance (d) between the 2nd and the 3rd image formed behind mirror A can be calculated as follows-

d= position of I₂ – position of I'

 $=22\ \mathrm{cm}-18\ \mathrm{cm}$

 $= 4 \, \mathrm{cm}$

Chemistry

Q.14. W	/hich of the following	elem	ents is more reactive from th	ne give	en?		
A) Calci	um	B)	Magnesium	C)	Strontium	D)	Potassium
Answer:	Potassium						
Solution:	Chemical reactivit of metals.	y decr	eases as you go left to righ	t of th	e periodic table and, it incre	eases	going down the group in the case
	Potassium (K) is th	ne mo	st reactive element among t	he giv	en options (Ca, Mg, Sr, K).	
			e alkali metal group and has its outermost electron to for				nost shell, making it highly y it is a highly reactive metal.
	less so than alkali	metals ion. ⊢	s. These elements have two lowever, the two valence ele	valen	ce electrons in their outern	nost sł	roup, which are also reactive but nell, which they can lose to form a em less reactive than potassium,
Q.15. T	he extraction of whic	h one	of the following metals invo	lves c	oncentration of the ore by	eachir	ng?
A) Copp	ber	B)	Magnesium	C)	Aluminium	D)	Potassium
Answer:	Aluminium						
Solution:	is first crushed and temperature and p	d grou ressu	nd to a fine powder, and the	en it is ocess.	treated with sodium hydro. The sodium hydroxide rea	xide so	um oxides as impurities. The ore plution $(NaOH)$ under high the aluminium oxide in the ore
	$\mathrm{Al}_2\mathrm{O}_3(\mathrm{s}) + 2\mathrm{NaOI}$	I(aq) -	$+ 3H_2O(l) \rightarrow 2 Na[Al(OH)_4]($	aq)			
Q.16. C	onsider the reaction	:					
С	$\mathrm{u}^{2+} + \mathrm{X}^- \! \rightarrow \mathrm{Cu}_2 \mathrm{X}_2$	$+ X_2$					
F	ind the product ${ m X}_2$, t	hat fo	rmed predominantly.				
A) Cl ₂		B)	Br_2	C)	I ₂	D)	All halogens are possible
Answer:	I ₂						
Solution:	reducing agent in	the giv		to C	${ m Cu}^{+1}$. The reduction of ${ m Cu}^2$	+ to C	on (I ^{$-$}). HI can act as a good u^{+1} involves the transfer of one molecular iodine (I ₂).
Q.17. T	he correct order of e	electro	negativity of Br, P, C and A	ls.			
A) Br >	C > P > As	B)	$\mathbf{Br} > \mathbf{P} > \mathbf{As} > \mathbf{C}$	C)	$\mathbf{Br} > \mathbf{As} > \mathbf{C} > \mathbf{P}$	D)	P>Br>As>C
Answer:	$\mathbf{Br} > \mathbf{C} > \mathbf{P} > \mathbf{As}$						
Solution:	a period from left t electronegativity(2	o right . 9) ele	, and decreases down a gro	oup in nents.	the periodic table. The hall The next highest electrone	ogen l	nd. It generally increases across promine has the highest y element is carbon(2.5) and the
Q.18. H	ow many of the follo	wing a	e– amino acids contain sulp	hur?			
L	ysine, Methionine, G	lutami	c acid, Threonine, Arginine	, Cyste	eine, Tyrosine, Isoleucine.		
A) 4		B)	5	C)	2	D)	6
Answer:	2						

Solution: There are two α -amino acids that contain sulfur: Methionine and Cysteine. Cysteine and methionine are sulphur containing amino acids. Amino acids get linked to one another by peptide bond formation and form a polypeptide chain of proteins. Hence cysteine and methionine are found in several proteins.

$$NH_2 - CH - COOH$$

 CH_2
 CH_2
 CH_2
 CH_3
methionine
 $NH_2 - CH - COOH$

$$H_2 - CH - COOH$$

 $H_2 - CH - COOH$
 CH_2
 SH
cysteine

- Q.19. Read the following two statements Statement I: lonic radius of ${\rm Li}^+$ is greater than ${\rm Mg}^{+2}$ Statement II: Lithium and magnesium can't form superoxide
- A) Both Statement I and Statement II are correct
- C) Statement I is correct but Statement II is incorrect
- Answer: Both Statement I and Statement II are correct
- Solution: The values of ionic radii of $Li^+ = 0.74$ Å and $Mg^{+2} = 0.72$ Å respectively. Thus, the lithium ion with +1 charge is only marginally larger than the magnesium ion having a charge of +2.

B)

D)

The superoxide releases the most energy when formed, the superoxide is preferentially formed for the larger metals where the more complex anions are not polarised. So, Li and Mg do not form superoxides.

Both Statement I and Statement II are incorrect

Statement I is incorrect but Statement II is correct

Therefore, option A is correct.

- Q.20. Assertion: Butanol has highest boiling point than ethoxyethane. Reason: Butanol exhibits intermolecular hydrogen bonding.
- A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- B) Both Assertion and Reason are true but Reason is NOT the correct explanation of Assertion.
- C) Assertion is true but Reason is false.
- D) Assertion is false but Reason is true.
- Answer: Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- Solution: The boiling point of butanol is higher than ethoxyethane due to extensive intermolecular hydrogen bonding. In case of ether there is no hydrogen bonding present. Hence, there is no molecular association. So ether has a low boiling point as compared to alcohol.
- Q.21. Which cell representation is correct for the reaction given below:

 $\mathrm{H_2} + 2\mathrm{AgCl} \rightarrow 2\mathrm{H^+} + \ 2\,\mathrm{Ag} \ + \ 2\,\mathrm{Cl^-}$

A)	$Pt\left H_{2}\right \left HCl\right \left AgCl\right \left Ag\right $	B)	$\operatorname{Pt} \operatorname{H}_2 \operatorname{HCl} \operatorname{AgCl} \operatorname{Pt}$
C)	$\mathrm{Ag} \mathrm{AgCl} \mathrm{HCl} \mathrm{H}_2 \mathrm{Pt}$	D)	$\operatorname{Pt} \operatorname{AgCl} \operatorname{HCl} \operatorname{H}_2 \operatorname{Pt}$
Ansv	ver: $Pt H_2 $ HCl $ AgCl $ Ag		

Solution:	The given reaction					
	$\rm H_2 + 2AgCl \rightarrow 2H$	$^++$ 2 Ag $+$ 2 Cl $^-$				
	Silver is undergoi anode.	ng reduction hence it will a	act as ca	athode in the give	n cell and hydro	ogen electrode acts as an
	The correct repre	sentation is :				
	$Pt H_2 HCl AgC$	l Ag				
Q.22. Syn ga	s with Cu as catalyst	produces:				
A) Ethanol	B)	Methanal	C)	Methane	D)	Methanoic acid
Answer: Meth	anal					
Solution:		so known as syngas) is a ${\rm is}$ with ${\rm Cu}$ as catalyst proc			le (CO) and hyd	drogen (H2) that is used as
	$\mathrm{CO} + \mathrm{H_2} {\overset{\mathrm{Cu}}{\longrightarrow}} \mathrm{HCH}$	0				
	If the catalyst is C	$ m r_2O_3-ZnO$ then the proc	duct is m	nethanol.		
Q.23. Which		st stable, diamagnetic an				
A) K ₃ [Co(CN) ₆] B)	$\left[\mathrm{Co(H_2O)}_6\right]\mathrm{Cl}_3$	C)	$Na_3[CoF_6]$	D)	All have exact equal stability
Answer: K ₃ [C	$Co(CN)_6]$					
liga cob	nds in this complex a	re indeed strong field ligating $3d^6$ configuration and	inds, wh	ich means they wi	Il cause a large	ic configuration. The cyanide splitting of the d orbitals. So here d ligand so, it is most stable
Q.24. Which	of the following has	same $d-$ electrons as chro	omium ii	n chromyl chloride	?	
A) Fe(III)	B)	Ni(III)	C)	Mn(VII)	D)	m Co(II)
Answer: Mn(VII)					
Solution: Chr a 30 con	omyl chloride has the 1^0 electron configurat figuration ($3d^7$), and	e chemical formula ${\rm CrO}_2$ (ion. From the given optior ${\rm Mn}^{7+}$ has a ${\rm d}^0$ electron c	${ m Cl}_2$, in what ${ m Fe}^{3+}$ is ${ m Fe}^{3+}$	hich the chromium has a ${ m d}^5$ electron ation (3 ${ m d}^0$). ${ m Co}^{2+}$ w	atom is in the - configuration (${ m i}$	+6 oxidation state which results in Bd^5), Ni^{3+} has a d^7 electron tron configuration.
So	among the given opt	ons $\operatorname{Mn}(\operatorname{VII})$ has same d	-electro	ons as chromium ir	n chromyl chlori	de.
Q.25. XeF4+	$\mathrm{SbF}_5 ightarrow [\mathrm{XeF}_m]^{+n} [\mathrm{SbF}_5 ightarrow [\mathrm{XeF}_m]^{+n} [\mathrm{SbF}_5 $	$[bF_p]^{-q}$				
The va	lue of $m + n + p + q$	=				
Answer: 11						
Solution: In the	ne given reaction, $\mathbf{X}_{\mathbf{f}}$	${f F}_4$ act as fluoride ion don	or and s	${ m SbF}_5$ act as fluorid	e ion acceptor.	
The	balanced chemical	equation for the given rea	iction is	:		
XeI	$\mathbf{Y}_4 + \mathrm{SbF}_5 ightarrow [\mathrm{XeF}_3]^+$	$[SbF_6]^-$				
A fl	uoride ion is transfer	red from xenon tetrafluorio	de to an	timony pentafluori	de.	
The	refore, the value of	m + n + p + q = 11.				
Q.26. How m	any factors will contri	bute to major role in cova	lent cha	racter of a compo	und?	
a. Pola	rising power of catio	n				
b. Pola	risability of the anior	I				
c. Diste	ortion caused by cati	on				
d Pola	risability of cation					

d. Polarisability of cation

Answer:

3

Solution: Fajan's rule is stated based on the concept of polarisation which states that the covalent nature of an anion increases with an increase in its polarisation. The main factors that affect the extent of polarisation of an anion

are the polarising power of the cation and the polarisability of the anion. The power of a cation to distort the other ion is known as its polarisation power and the tendency of the anion to get polarised by the other ion is known as its polarisability. The greater the polarisation power or polarisability of an ion, the greater will be its tendency to form a covalent bond.

Therefore, The correct answer is 3.

Mathematics

Q.27. Consider the word "INDEPENDENCE". The number of words such that all the vowels are together is

A)	16800	B)	15800	C)	17900	D)	14800
----	-------	----	-------	----	-------	----	-------

Answer: 16800

Solution: There are 5 vowels in the given word which are 4E's & 1I.

Since they have to always occur together we that them as a single object *E E E I* for the time being.

This single object together with 7 remaining object will account for 8 objects.

There 8 objects in which there are 3N's & 2D's can be arrangement in $\frac{8!}{3!2!}$ ways.

Corresponding to each of there arrangements the 5 vowels E, E, E & I can be arranged in $\frac{5!}{4!}$ Hence, required number of arrangements.

$$=rac{8!}{3!2!} imesrac{5!}{4!}=16800$$

Q.28. 7 boys and 5 girls are to be seated around a circular table such that no two girls sit together is

A)	$126(5!)^2$	B)	720(5!)	C)	720(6!)	D) 72	20
----	-------------	----	---------	----	---------	-------	----

Answer: $126(5!)^2$

Solution: Given,

7 boys and 5 girls are to be seated around a circular such that no two girls to be seated together,

Now we know that *n* objects can be arranged in a circle in (n-1)! ways.

Let us first arrange 7 boys in circular arrangement in (7 - 1)! ways.

Now there will be 7 gaps.

So let us select any 5 gaps out of 7 gaps and arrange 5 girls in the chosen gaps. This can be done in ${}^{7}C_{5} \times 5!$ ways.

Hence, required arrangements are $6! \times {}^7C_5 \times 5!$

$$= 6 \times 5! \times \frac{7 \times 6}{2} \times 5!$$

$$= 126(5!)^2$$
.

Therefore, required arrangements are $126(5!)^2$

Q.29. The coefficient independent of x in the expansion of
$$\left(3x^2 - \frac{15}{2x^5}\right)^7$$
 is

A)
$$\frac{6715}{3}$$
 B) $\frac{5293}{6}$ C) $\frac{5103}{4}$ D) $\frac{7193}{4}$

Answer: $\frac{5103}{4}$

Solution:

The given expansion is
$$\left(3x^2 - \frac{15}{2x^5}\right)^7$$
.

The general term in the binomial expansion of $(x + a)^n$ is given by $T_{r+1} = {}^nC_r x^{n-r}a^r$.

$$\Rightarrow T_{r+1} = {^7C_r \left(3x^2\right)^{7-r} \left(\frac{-1}{2x^5}\right)^{7-r}}$$
$$= {^7C_r (-1)^r \left(\frac{3^{7-r}}{2r}\right) x^{14-2r-5r}}$$

Now for term independent of $x \Rightarrow 14 - 2r - 5r = 0$

$$\Rightarrow r = 2$$

Coefficient of x^0 is ${}^7C_2(-1)^2\times \left(\frac{3^{7-2}}{2^2}\right)$

$$= \frac{7 \times 6}{2} \times \frac{3^5}{2^2}.$$
$$= \frac{5103}{2}$$

= -----

Hence the coefficient of x^0 is $\frac{5103}{4}$.

Q.30. Shortest distance between the lines
$$\frac{x-5}{4} = \frac{y-3}{6} = \frac{z-2}{4}$$
 and $\frac{x-3}{7} = \frac{y-2}{5} = \frac{z-9}{6}$ is

A)
$$\frac{190}{37}$$
 B) $\frac{190}{\sqrt{756}}$ C) $\frac{37}{190}$ D) $\frac{756}{\sqrt{190}}$

Answer: $\frac{190}{\sqrt{756}}$

•

Solution: Given:

$$\frac{x-5}{4} = \frac{y-3}{6} = \frac{z-2}{4}$$
$$\frac{x-3}{7} = \frac{y-2}{5} = \frac{z-9}{6}$$
So,
$$\vec{a}_1 = 5\hat{i} + 3\hat{j} + 2\hat{k}$$
$$\vec{a}_2 = 3\hat{i} + 2\hat{j} + 9\hat{k}$$

So,

$$\overrightarrow{a}_2 - \overrightarrow{a}_1 = -2\hat{i} - \hat{j} + 7\hat{k}$$

And,

$$\overrightarrow{b}_{1} \times \overrightarrow{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 6 & 4 \\ 7 & 5 & 6 \end{vmatrix} = 16\hat{i} + 4\hat{j} - 22\hat{k}$$

 $\Rightarrow \left| \overrightarrow{b}_1 \times \overrightarrow{b}_2 \right| = \sqrt{256 + 16 + 484} = \sqrt{756}$

Shortest distance between the lines

$$= \frac{\left| \begin{array}{c} \left(\overrightarrow{a}_{2} - \overrightarrow{a}_{1}\right) \cdot \left(\overrightarrow{b}_{1} \times \overrightarrow{b}_{2}\right)}{\left| \overrightarrow{b}_{1} \times \overrightarrow{b}_{2} \right|} \right|$$
$$= \left| \begin{array}{c} \left(-2\hat{i} - \hat{j} + 7\hat{k}\right) \cdot \left(16\hat{i} + 4\hat{j} - 22\hat{k}\right)}{\sqrt{756}} \right|$$
$$= \left| \frac{32 - 4 - 154}{\sqrt{756}} \right| = \frac{190}{\sqrt{756}} \text{ units}$$

Q.31. Consider the data x, y, 10, 12, 4, 6, 8, 12. If mean of data is 9 and variance is 9.25, then the value of 3x - y is (x > y)

A) 25

Answer:

25

B)

1

- C) 24

D)

13

Consider the data x, y, 10, 12, 4, 6, 8, 12. Solution:

So,

$$\begin{aligned} \operatorname{Mean} &= \frac{x + y + 10 + 12 + 4 + 6 + 8 + 12}{8} \\ &\Rightarrow 9 = \frac{x + y + 52}{8} \\ &\Rightarrow x + y + 52 = 72 \\ &\Rightarrow x + y = 20 \end{aligned}$$
And,
$$\begin{aligned} \operatorname{Variance} &= \left(\frac{\sum x_i^2}{n}\right) - \left(\frac{\sum x_i}{n}\right)^2 \\ &\Rightarrow 9.25 = \left(\frac{x^2 + y^2 + 100 + 144 + 16 + 36 + 64 + 144}{8}\right) - (9)^2 \\ &\Rightarrow x^2 + y^2 = 218 \\ &\Rightarrow (x + y)^2 - 2xy = 218 \\ &\Rightarrow 20^2 - 2xy = 218 \\ &\Rightarrow 20^2 - 2xy = 218 \\ &\Rightarrow 2xy = 182 \\ &\Rightarrow xy = 91 \end{aligned}$$
Now solving $x + y = 20 \ \& \ xy = 91$ we get,

$$x=13, \ y=7 \Rightarrow 3x-2y=25$$

If the coefficient of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1:5:20, then the coefficient of the Q.32. forth term of the expansion is:

A) 3600 B) 3658 C) 3654D) 1000

Answer: 3654

Solution: Given,

$${}^{n}C_{r-1}: {}^{n}C_{r}: {}^{n}C_{r+1} = 1:5:20$$

Now using the formula $\frac{n_{C_{r}}}{n_{C_{r-1}}} = \frac{n-r+1}{r}$ we get,

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n{-}r{+}1}{r} = \frac{5}{1}$$

 $\Rightarrow n-6r+1=0$ (1)

And
$$\frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1} = \frac{20}{5}$$

 $\Rightarrow n-5r-4=0$ (2)

Solving above equations we get,

$$n = 29 \ \& \ r = 5$$

So, the coefficient of forth term will be $^nC_3=\frac{29}{3}C_3=\frac{29\times 28\times 27}{3\times 2\times 1}=3654$

Q.33. Dot product of two vectors is 12 and cross product is $4\hat{i} + 6\hat{j} + 8\hat{k}$, find product of modulus of vectors.

A) $4\sqrt{35}$ B) $2\sqrt{65}$ C) $5\sqrt{37}$ D) $6\sqrt{37}$

Answer: $2\sqrt{65}$

Solution: Let
$$\vec{a}$$
. $\vec{b} = 12$ and $\vec{a} \times \vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$.

Let us apply Lagrange's Identity which is $\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2 - \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2$

$$\Rightarrow \left| \overrightarrow{a} \times \overrightarrow{b} \right| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$
$$\Rightarrow \left(\sqrt{116} \right)^2 = \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2 - (12)^2$$
$$\Rightarrow \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2 = 116 + 144$$
$$\Rightarrow \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2 = 260$$
$$\Rightarrow \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| = \sqrt{260} = 2\sqrt{65}$$
(Since Modulus is always positive)

Therefore, product of modulus of vectors is $2\sqrt{65}$.

Q.34. A bolt manufacturing company has three products A, B and C. 50% & 30% of the products are A and B type respectively and remaining are C type. Then, the probability that the product A is defective is 4%, that B is defective is 3% and that C is defective is 2%. A product is picked randomly and found to be defective, then the probability that it is type C is

A)
$$\frac{5}{33}$$
 B) $\frac{2}{33}$ C) $\frac{4}{33}$ D) $\frac{7}{33}$

Answer:

4

33

Solution: Let $X \equiv$ Event that product is defective, then

$$P\left(\frac{X}{A}\right) = \frac{4}{100}$$
$$P\left(\frac{X}{3}\right) = \frac{3}{100}$$
$$P\left(\frac{X}{C}\right) = \frac{2}{100}$$

Now,

$$P\left(\frac{C}{X}\right) = \frac{P(C)P\left(\frac{X}{C}\right)}{P(A)P\left(\frac{X}{A}\right) + P(B)P\left(\frac{X}{B}\right) + P(C)P\left(\frac{X}{C}\right)}$$
$$\Rightarrow P\left(\frac{C}{X}\right) = \frac{\frac{20}{100} \times \frac{2}{100}}{\frac{50}{100} \times \frac{4}{100} + \frac{30}{100} \times \frac{3}{100} + \frac{20}{100} \times \frac{2}{100}}$$
$$\Rightarrow P\left(\frac{C}{X}\right) = \frac{40}{200 + 90 + 40}$$
$$\Rightarrow P\left(\frac{C}{X}\right) = \frac{4}{33}$$

Q.35. The area under the curve of equations : $x^2 \le y, \ y \le 8 - x^2 \text{ and } y \le 7$ is

A)
$$\frac{16}{3}$$
 B) 18 C) 20 D) $\frac{22}{3}$

Answer: 20

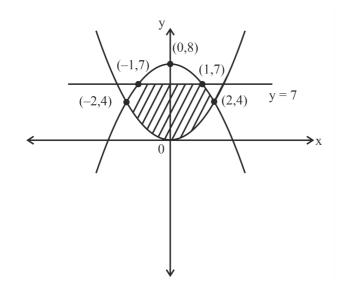
The point of intersection of the curves $x^2 \le y$ and $y \le 8 - x^2$ is obtained by,

$$\Rightarrow x^2 = 8 - x^2$$

-

 $\Rightarrow x = \pm 2$ and y = 4.

Hence the points are (2, 4), (-2, 4).


The points of intersection of the curves $y \leq 8 - x^2$ and $y \leq 7$ is obtained by,

$$\Rightarrow$$
 8 $-x^2 = 7$

 $\Rightarrow x = \pm 1 \text{ and } y = 7$

Hence the points are (1,7), (-1,7).

The required graph is

The required area is symmetrical about y-axis.

Hence required area is $A = 2 \left[\int_0^4 \sqrt{y} \, \mathrm{d} \, y + \int_4^7 \sqrt{8-y} \, \mathrm{d} \, y \right]$

$$A = 2 \left[\left[\frac{\frac{3}{y^2}}{\frac{3}{2}} \right]_0^4 - \left[\frac{(8-y)^3}{\frac{3}{2}} \right]_4^7 \right]$$
$$= \frac{4}{3} \left[(4)^{\frac{3}{2}} - (0)^{\frac{3}{2}} - \left\{ (8-7)^{\frac{3}{2}} - (8-4)^{\frac{3}{2}} \right\} \right]$$
$$= \frac{4}{3} (8-0-1+8)$$

= 20 sq units.

Hence, the required area is 20 sq units.

B)

Odd

Check whether the function
$$f(x)=rac{\left(1+2^{x}
ight)^{7}}{2^{x}}$$
 is

Answer: Neither even nor odd

C) Neither even nor odd D)

None of these

Solution:

The given function is
$$f(x) = \frac{(1+2^x)^7}{2^x}$$
.

We know that if f(-x) = -f(x) then f(x) is odd function and if f(-x) = f(x) then f(x) is even function.

$$\Rightarrow f(-x) = \frac{\left(1+2^{-x}\right)^7}{2^{-x}} \\ = \frac{\left(2^x+1\right)^7}{2^{7x}\times 2^{-x}} = \frac{\left(1+2^x\right)^7}{2^{6x}}.$$

This is neither equal to f(x) nor -f(x).

Therefore, the given function is neither even nor odd.

Q.37.
If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $Q = PAP^T$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then $P^T Q^{2007} P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then find $2a + b + 3c - 4d$
A) 2005 B) 2006 C) 2007 D) 2008

Answer: 2005

Solution: Given:

$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
$$\therefore PP^{T} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow PP^{T} = I$$

Now,

$$P^{T}(PAP^{T})^{2007}P = P^{T} \underbrace{(PAP^{T})(PAP^{T})...(PAP^{T})}_{2007 \text{ times}} P$$

$$\Rightarrow P^{T}(PAP^{T})^{2007}P = A^{2007}$$
Now,
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

$$\vdots \quad \vdots \quad \vdots \\A^{2007} = \begin{bmatrix} 1 & 2007 \\ 0 & 1 \end{bmatrix}$$
So,
$$\Rightarrow P^{T}(PAP^{T})^{2007}P = \begin{bmatrix} 1 & 2007 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow P^{T}QP = \begin{bmatrix} 1 & 2007 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
So,
$$a = 1, \ b = 2007, \ c = 0, \ d = 1$$

$$2a + b + 3c - 4d = 2 + 2007 - 4 = 2005$$
If $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ and $|adj(adj(adjA))| = 16^{n}$ then the value of n is

Answer: 6

Q.38.

Solution:

Given that
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $|adj (adj (adjA))| = 16^n$.

We know that $\left|adjA
ight|=\left|A
ight|^{n-1}$ and $\left|adj\left(adjA
ight)
ight|=\left|A
ight|^{\left(n-1
ight)^{2}}$

Similarly, $|adj (adj (adj A))| = |A|^{(n-1)^3}$ where n is the order of the square matrix.

Let us find |A|.

$$|A| = 2(2 \times 2 - (1)(-1)) - 1(1 \times 2 - 0(-1)) + 0(1 \times 1 - 0 \times 2)$$

$$=2(5)-(2)+0=8$$

$$\Rightarrow |A|^{(n-1)^3} = (8)^{(3-1)^3} = 8^8$$

$$\Rightarrow 8^8 = 16^n$$

$$\Rightarrow \left(2^3\right)^8 = \left(2^4\right)^n$$
$$\Rightarrow 2^{24} = 2^{4n}$$

$$\Rightarrow 24 = 4n$$

$$\Rightarrow$$
 $n = 6$.

Therefore, the value of n is 6.

Q.39. Maximum value of n such that 66! is divisible by 3^n is

Answer:

Solution: We know that,

31

Maximum value of n for p^n where p is prime divides the number a! is given by,

$$\left[\frac{a}{p}\right] + \left[\frac{a}{p^2}\right] + \left[\frac{a}{p^3}\right] + \left[\frac{a}{p^4}\right] + \dots$$

Since, 3 is a prime number, so we have

$$= \left[\frac{66}{3}\right] + \left[\frac{66}{32}\right] + \left[\frac{66}{33}\right] + \left[\frac{66}{34}\right] + \dots$$
$$= 22 + 7 + 2 + 0$$
$$= 31$$

So, maximum value of n is 31.