HARD
12th CBSE
IMPORTANT
Earn 100

Find the integral of the function sin3(2x+1)

Important Points to Remember in Chapter -1 - Integrals from NCERT MATHEMATICS PART II Textbook for Class XII Solutions

1. Fundamental Integration Formulas:

(i) xndx=xn+1n+1+C, n-1

(ii) x-1dx=1xdx=logx+C

(iii) exdx=ex+C

(iv) axdx=axloga+C

(v) logx dx=xlogx-x+C

(vi) 1x2dx=-1x+C

(vii) 1xdx=2x+C

(viii) sinx dx=-cosx+C

(ix) cosx dx=sinx+C

(x) tanx dx=logsecx+C

(xi) cosecx dx=logcosecx-cotx+C

(xii) secx dx=logsecx+tanx+C

(xiii) cotx dx=logsinx+C

(xiv) 11-x2dx=sin-1x+C

(xv) 11+x2dx=tan-1x+C

(xvi) 1xx2-1dx=sec-1x+C

(xvii) sec2x dx=tanx+C

(xviii) cosecx cotx dx=-cosecx+C

(ix) secxtanx dx=secx+C

(xx) cosec2x dx=-cotx+C

Note: If f(x)dx=F(x)+C, then, fax+bdx=F(ax+b)a+C

2. Some Standard Results of Integration:

(i) 1x2+a2dx=logx+x2+a2+C

(ii) 1x2-a2dx=logx+x2-a2+C

(iii) 1x2-a2dx=12alogx-ax+a+C

(iv) 1a2-x2dx=12aloga+xa-x+C

(v) a2-x2dx=x2a2-x2+a22sin-1xa+C

(vi) a2+x2dx=x2a2+x2+a22logx+a2+x2+C

(vii) x2-a2dx=x2x2-a2-a22log|x+x2-a2|+C

3. Integration by the Method of Substitution:

To integrate, the integrals of the form:[f(x)]nf'xdx,

Put fx=t f'xdx=dt

fxnf'xdx=tndt=tn+1n+1+C=fxn+1n+1+C 

4. Integration by the Method of Partial Fractions:

An algebraic rational function of x is a function of the form fxgx where f(x) and g(x) are both polynomial functions and g(x)0.

Form of the proper rational function Form of the associated partial fractions
mx+nx-ax-b Ax-a+Bx-b
lx2+mx+nx-ax-bx-c Ax-a+Bx-b+Cx-c
lx2+mx+nx-a2x-b Ax-a+Bx-a2+Cx-b
lx2+mx+nx-a3x-b Ax-a+Bx-a2+Cx-a3+Dx-b
lx2+mx+nx-ax2+bx+c A(x-a)+Bx+C(x2+bx+c), where x2+bx+c cannot further be factored.

5. Integrals of the Formpx+qax2+bx+cdx:

Put px+q=lddxax2+bx+c+m=l(2ax+b)+m, where l and m are determined by comparing coefficients on both sides.

6. Integrals of the Form dxacosx+bsinx+c:

Express sinx and cosx in terms of tanx2. And then substitute tanx2=t.

7. Integrals of the form pcosx+qsinxacosx+bsinxdx:

Put pcosx+qsinx=lacosx+bsinx+mddxacosx+bsinx 

where l and m are constants to be found by solving the equations obtained by equating the corresponding coefficients of sinx and cosx on both sides.

8. Integration by Parts:

(i) f1x·f2xdx=f1xf2xdx-ddxf1x·f2xdxdx, where f1x is considered as the I function and f2x as the II function.

We generally follow the rule ‘ILATE’ to determine which of the two functions is to be I and which of the two functions is to be the II.

(ii) exfx+f'x dx=exfx+C

9. First fundamental Theorem of Integral Calculus:

Let f be a continuous function of x for axb and A(x)=axf(x)dx, then A'(x)=f(x) for all x in a,b and Aa=0.

10. Second fundamental Theorem of Integral Calculus:

Let ϕ(x) be the primitive or anti-derivative of a function f(x) defined on [a, b] i.e., ddx(ϕ(x))=f(x). Then, abfxdx=ϕbϕa

11. Following are some fundamental properties of definite integrals that are very useful in evaluating integrals:

(i) abfxdx=abftdt

(ii) abfxdx=-bafxdx

(iii) abfxdx=acfxdx+cbfxdx

(iv) 0afxdx=0afa-xdx

(v) -aafxdx=20a  fxdx  ,    if  fx  is an even function0                    ,     if  fx  is an odd function

(vi) -aa fxdx=0a fx+f(-x)dx

(vii) 02afxdx=20a fxdx,    if f2a-x=fx0                 ,     if f2a-x=-fx

(viii) a2a  fxdx=02a fx+f(2a-x)dx

 (ix) abfxdx=abfa+b-xdx

 12. Definite Integral as the limit of a sum:

abfxdx=limh0 hf(a)+f(a+h)+f(a+2h)++f(a+(n-1)h

                             or

abfxdx=limh0hfa+h+fa+2h+fa+3h+++fa+nh

where h=b-an.

13. Leibniz's integral rule:

ddxg(x)h(x)ftdt=fhxh'x-fgxg'x