Argument of Complex Number

IMPORTANT

Argument of Complex Number: Overview

This topic covers concepts such as Argument of a Complex Number, Principle Argument of a Complex Number, General Argument of a Complex Number, Argument of Product of Two Complex Numbers, Argument of Quotient of Two Complex Numbers, etc.

Important Questions on Argument of Complex Number

EASY
IMPORTANT

If argz<0, then argzargz=

EASY
IMPORTANT

Let z and  w be two non-zero complex numbers such that  z=w  and  argz+argw=π  then z equals –

EASY
IMPORTANT

A complex number z=1+i3.

The general argument of z is

EASY
IMPORTANT

A complex number z=3+i.

The general argument of z is 2nπ+π6, where n is an integer.

EASY
IMPORTANT

A complex number z=1-i.

The argument of z¯ is

EASY
IMPORTANT

A complex number z=3+9i.

Find the argument of z¯.

MEDIUM
IMPORTANT

If z=x+iy and argz1z+1=π4, find the locus of x, y.

HARD
IMPORTANT

Let z1=10+6 i, z2=4+6 i. If z is any complex number such that, argzz1zz2=π4, then prove that |z79 i|=32.

MEDIUM
IMPORTANT

If z1=-3+i and z2=i3-1, show that argz1z2argz1-argz2

MEDIUM
IMPORTANT

If z1=-3+i and z2=i3-1, show that argz1z2argz1+argz2

HARD
IMPORTANT

If the argument of z-az¯-b is equal to that of 3+i1+3i1+i, where a, b are two real numbers and z¯ is the complex conjugate of z, find the locus of z in the Argand diagram. Find the values of a and b so the the locus becomes a circle having its centre at123+i .

HARD
IMPORTANT

If z=x+i y and if ampz-1z+1=π4 then show that the locus (in complex plane) of z is a circle.

MEDIUM
IMPORTANT

Find the amplitude and modulus of i1-i.

MEDIUM
IMPORTANT

If z=x+iy is a complex number in the 1st quadrant of the Argand plane and if ampz-1=ampz+3 i, then find the value of xy-x-1y+3.

EASY
IMPORTANT

Find the principle amplitude of -3-3 i

MEDIUM
IMPORTANT

Find the principle amplitude of -3 i

MEDIUM
IMPORTANT

Find the principle amplitude of 3 i

MEDIUM
IMPORTANT

arg1-i31+i3=

EASY
IMPORTANT

If z is a purely imaginary number and Im z<0, then amp z=

EASY
IMPORTANT

The principle amplitude of -1-i is