Angle Between a Line and a Plane

IMPORTANT

Angle Between a Line and a Plane: Overview

In this topic, we will discuss the unsymmetrical form of a line. The reduction of unsymmetrical form to symmetrical form and intersection of a line and a plane are also explained here.

Important Questions on Angle Between a Line and a Plane

EASY
IMPORTANT

The coordinates of the point where the line  x+12=y+23=z+34  meets the plane x+y+4z=6  would be:

HARD
IMPORTANT

Find the angle between the line r=(i^+2ȷ^-k)+λ(i^-j^+k^) and the plane r2i-j+k=5.

MEDIUM
IMPORTANT

Find the angle between the line x-13=y+12=z+24 and the plane 2x+y-3z+4=0

MEDIUM
IMPORTANT

Find the angle between the planes r.i^-2j^+3k^=5 and the line r=i^+j^-k^+λi^-j^+k^

HARD
IMPORTANT

Consider the plane x+y-z=1 and point A(1,2,-3) . A line L has the equation x=1+3r, y=2-r & z=3+4r.

The equation of the plane containing line L and point A has the equation

HARD
IMPORTANT

For next three question please follow the same 

Consider the plane x+y-z=1 and point A(1,2,-3) . A line L has the equation x=1+3r, y=2-r & z=3+4r.

 The coordinate of a point B of line L such that AB is parallel to the plane is

MEDIUM
IMPORTANT

Show that the line of intersection of the planes r·(i^+3j^-2k^)=0 and r2i^+4j^-3k^=0 is equally inclined to i^ & j^. Also find the angle it makes with k^.

MEDIUM
IMPORTANT

Find the value of k. If the  angle between the line r=(i^+2ȷ^-k^)+λ(i^-j^+k^) and the plane r2i^-j^+k^=5 is sin-122k.

MEDIUM
IMPORTANT

Prove that the lines x-21=y-44=z-67 and  x+13=y+35=z+57 are coplanar. Also, find the equation of the plane containing these two lines.

MEDIUM
IMPORTANT

Find the angle at which the normal vector to the plane 4x+8y+z=5 is inclined to the coordinate axes.  

MEDIUM
IMPORTANT

If the line r=i^+λ2i^-mj^-3k^ is parallel to the plane r·mi^+3j^+k^=4, then find the value of m.

MEDIUM
IMPORTANT

Find the angle between the line r=2i^+3j^+k^+λi^+2j^-k^ and plane r·2i^-j^+k^=4

MEDIUM
IMPORTANT

Find the angle between the line r=i^+2j^-k^+λi^-j^+k^ and plane r·2i^-j^+k^=4

MEDIUM
IMPORTANT

 Find the angle between the line x-23=y+1-1=z-22 and plane 3x+4y+z+5=0.

MEDIUM
IMPORTANT

Find the angle between the line x+13=y-12=z-24 and plane 2x+y-3z+4=0

MEDIUM
IMPORTANT

Find the coordinates of the point where the line x+12=y+23=z+34 meets the plane x+y+4z=6.

HARD
IMPORTANT

Distance of point of (-2,3,-4) from the line x+23=2y+34=3z+45 measured parallel to the plane 4 x+12 y-3 z+1=0 is λ then λ is

HARD
IMPORTANT

The lines x-21=y-31=z-4-kand x-1k=y-42=z-51 are coplanar if :

MEDIUM
IMPORTANT

The line passing through the points 5, 1, a and 3, b, 1 crosses the yz-plane at the point 0, 172, -132. Then, find the value of a and b:

MEDIUM
IMPORTANT

If the line x-14=y+3-2=z+51 lies on the plane 2x+ly+mz=16, then l2+m2 is equal to: