Types of Discontinuity

IMPORTANT

Types of Discontinuity: Overview

The topic will discuss the different types of discontinuity of a given mathematical function. It also discusses the jump, removable and infinite discontinuity of the function along with their explanation.

Important Questions on Types of Discontinuity

MEDIUM
IMPORTANT

Points of discontinuity for fx=[x2]  x1,2 

EASY
IMPORTANT

Let f be a composite function of x defined by fu=1u3-6u2+11u-6 where, ux=1x. Then the number of points x, where f is discontinuous is:

HARD
IMPORTANT

In 0,5, the functions sinx+sin2x discontinuous at

MEDIUM
IMPORTANT

The function fx=sinlnx;x01              ;x=0

MEDIUM
IMPORTANT

The jump of the function fx=1-a1x1+a1x,a>0 at its point of discontinuity is 

MEDIUM
IMPORTANT

The function fx=tan-11x-5 has:

HARD
IMPORTANT

If fx=cosπx,            x12x-3x2-2,x>1

Then number of points of discontinuity of fx in x0,2 is.

EASY
IMPORTANT

The number of points at which the function fx=1x-x is not continuous is 

MEDIUM
IMPORTANT

A discontinuous function y=f(x) satisfying x2+y2=4 is given by f(x)=

MEDIUM
IMPORTANT

Let f:0,2 be defined by fx=x-x+12, where x denotes the greatest integer less than equal to x. At how many points of 0,2, is f discontinuous ?

MEDIUM
IMPORTANT

If [.] denotes the Greatest integer function, then f(x)=[x]2-x2 is discontinuous at

HARD
IMPORTANT

The function f(x)=4-x24x-x3 is :

MEDIUM
IMPORTANT

Let gx=1-x;x+2;4-x;0x11<x<22x4, then the numbers of points where ggx is discontinuous is

HARD
IMPORTANT

 

f(x)=sin(a+x)+sin(a-x)-2sinaxsinx       =sina  for xa for x=a is Discontinuous at x=a

HARD
IMPORTANT

f(x)=3sinx-12xlog(1+x)    for x0  2log3             for x=0is Discontinuous at x=0.

HARD
IMPORTANT

Discuss the continuity of the following functions. Which of these functions have removable discontinuity? Redefine such a function at the given point so as to remove discontinuity.

f(x)=sin(a+x)+sin(a-x)-2sinaxsinx       =sina  for xa for x=a at x=a

MEDIUM
IMPORTANT

Discuss the continuity of the following functions. Which of these functions have removable discontinuity? Redefine such a function at the given point so as to remove discontinuity.

 fx=xx1 for x0 for x=0 at origin

HARD
IMPORTANT

Discuss the continuity of the function. Is this functions has removable discontinuity ?.  Redefine such a function at the given point so as to remove discontinuity.

f(x)=3sinx-12xlog(1+x)    for x0  2log3             for x=0,at x=0

HARD
IMPORTANT

Discuss the continuity of the function fx defined by 

fx=4x-ex6x-1,for x0log23,for x=0} at x=0

If the discontinuity is removable redefine the function, so that it becomes continuous.

HARD
IMPORTANT

Discuss the continuity of the function fx defined by fx=1-sinxπ-2x2,for xπ227,for x=π2} at x=π2

If the discontinuity is removable redefine the function, so that it becomes continuous.