Rules of Differentiation

IMPORTANT

Rules of Differentiation: Overview

This topic covers concepts, such as, Differentiation Rules, Addition Rule in Differentiation, Derivative of Infinite Series & Differentiation of Determinant etc.

Important Questions on Rules of Differentiation

EASY
IMPORTANT

If lnx+y=2xy, then y'0 is equal to

EASY
IMPORTANT

If x 2 + y 2 = 1,   then :

HARD
IMPORTANT

If f x = cos x + x 2 sin x + x 2 - cos x + x 2 sin x - x 2 cos x - x 2 sin x - x 2 sin 2 x 0 sin 2 x 2 then, find  f x

MEDIUM
IMPORTANT

If f x = x - a 4 x - a 3 1 x - b 4 x - b 3 1 x - c 4 x - c 3 1 then f x = λ · x - a 4 x - a 2 1 x - b 4 x - b 2 1 x - c 4 x - c 2 1 · Find the value of λ

HARD
IMPORTANT

If the dependent variable y is changed to 'z' by the substitution y = tan z then the differential equation  d 2 y d x 2 = 1 + 2 1 + y 1 + y 2 d y d x 2  is changed to d 2 z d x 2 = cos x 2 z + k d z d x 2 ,then find the value of k.

HARD
IMPORTANT

Let Px be a polynomial of degree 4 such that P1=P3=P5=P'7=0. If the real number x1,3,5 is such that Px=0 can be expressed as x=pq where 'p' and 'q' are relatively prime, then p+q equals

MEDIUM
IMPORTANT

A twice differentiable function f(x) is defined for all real numbers and satisfies the following conditions, f0=2;  f'0=-5 and f''0=3. The function g(x) is defined by g(x)=eax+fxxR, where a is any constant. If g'(0)+g"(0)=0. Then a can be equal to 

EASY
IMPORTANT

if y = y(x) and it follows the relation  e x y + y cos x = 2,  then find (i) y' (0) and (ii) y'' (0)

HARD
IMPORTANT

Let fx=x2-4x-3, x>2 and let gx be the inverse of fx. Find the value of g'2 where fx=2

MEDIUM
IMPORTANT

Suppose fx=tansin-12x, then f'14 is equal to

HARD
IMPORTANT

Find the derivative with respect to x of the function :

logcosxsinxlogsinxcosx-1+arcsin2x1+x2 at x=π4

HARD
IMPORTANT

Letfx=x+12x+12x+12x+ Then the value of f(100)·f'(100) is 

HARD
IMPORTANT

Differentiate 1+x2+1-x21+x2-1-x2 w .r. t. 1-x4

MEDIUM
IMPORTANT

If y=logexex·ayyx, then dydx is equal to

HARD
IMPORTANT

If y=x22+12xx2+1+logx+x2+1, find the value of xdydx+logdydx.

HARD
IMPORTANT

If  y=cos13x+41x25, then   dy dx is:

MEDIUM
IMPORTANT

If   y= sin 1 x 1 x 2 ,  then 1x2d2ydx23xdydxy is equal to:

MEDIUM
IMPORTANT

If (cosx)y=(siny)x, find dydx

MEDIUM
IMPORTANT

If   siny=xsin(a+y),  find   dy dx