Similar Triangles

Author:R K Bansal
10th ICSE
IMPORTANT

Important Questions on Similar Triangles

HARD
IMPORTANT

In the following figure, point D divides AB in the ratio 3:5. Find:

BC=4.8cm, find the length of DE.

Question Image

HARD
IMPORTANT

In the following figure, point D divides AB in the ratio 3:5. Find:

DE=2.4cm, find the length of BC.

Question Image

HARD
IMPORTANT

In the following figure, point D divides AB in the ratio 3:5. Find:

AEAC

Question Image

HARD
IMPORTANT

In the given figure, B=E, ACD=BCE, AB=10.4cm and DE=7.8cm. Find the ratio between areas of the ABC and DEC.

Question Image

EASY
IMPORTANT

In the given figure, ABC is a triangle. DE is parallel to BC and ADDB=32.

Question Image

What is ratio of the areas of DEF and BFC ?

HARD
IMPORTANT

In the given figure, ABC is a triangle. DE is parallel to BC and ADDB=32.

Question Image

Prove that DEF is similar to CBF.

Hence, find EFFB.

MEDIUM
IMPORTANT

In the given figure, ABC is a triangle. DE is parallel to BC and ADDB=32.

Question Image

Determine the ratio ADAB and DEBC.

MEDIUM
IMPORTANT

In the given figure, BC, is parallel to DE. Area of triangle ABC=25cm2, Area of trapezium BCED=24cm2 and DE=14cm. Calculate the length of BC.

Also, find the area of the triangle BCD.

Question Image

EASY
IMPORTANT

In the figure, given below, ABCD is a parallelogram. P is a point on BC such that BP:PC=1:2. DP produced meets AB produced at Q. Given the area of triangle CPQ=20cm2.

Question Image

Calculate: Area of parallelogram ABCD.

EASY
IMPORTANT

In the figure, given below, ABCD is a parallelogram. P is a point on BC such that BP:PC=1:2. DP produced meets AB produced at Q. Given the area of triangle CPQ=20cm2.

Question Image

Calculate: Area of triangle CDP.

HARD
IMPORTANT

The given diagram shows two isosceles triangles which are similar. In the given diagram, PQ and BC are not parallel;  PC=4, AQ=3, QB=12, BC=15 and AP=PQ.

Calculate: The ratio of the areas of triangle  APQ and triangle ABC.

Question Image

MEDIUM
IMPORTANT

The given diagram shows two isosceles triangles which are similar. In the given diagram, PQ and BC are not parallel;  PC=4, AQ=3, QB=12, BC=15 and AP=PQ.

Calculate: The length of AP.

Question Image

EASY
IMPORTANT

In the given triangle PQR, LM is parallel to  QR and PM:MR=3:4.

Question Image

Calculate the value of ratio: Area of LQMArea of LQN

MEDIUM
IMPORTANT

In the given triangle PQR, LM is parallel to  QR and PM:MR=3:4.

Question Image

Calculate the value of ratio: Area of LMNArea of MNR

MEDIUM
IMPORTANT

In the given triangle PQR, LM is parallel to  QR and PM:MR=3:4.

Question Image

Calculate the value of ratio: PLPQ and then LMQR

HARD
IMPORTANT

The ratio between the corresponding sides of two similar triangles is 2 is to 5. Find the ratio between the areas of these triangles.

HARD
IMPORTANT

The given figure shows a parallelogram ABCD. E is a point in AD and CE produced meets BA produced at point F. If AE=4cm, AF=8cm and AB=12cm, find the perimeter of the parallelogram ABCD

Question Image

HARD
IMPORTANT

In the following figure, M is midpoint of BC of a parallelogram ABCD. DM intersects the diagonal AC at P and produced at E. Prove that: PE=2PD.

Question Image

HARD
IMPORTANT

In figure, given below, PQR is a right-angle triangle right angled at Q. XY is parallel to QR, PQ=6cm, PY=4cm and PX:XQ=1:2. Calculate the lengths of PR and QR.

Question Image

HARD
IMPORTANT

In the figure, given below, AB, DC and EF are parallel lines. Given AB=7.5cmDC=y cmEF=4.5cmBC= x cm  and CE=3cm, Calculate the values of x and y.

Question Image