Angle Bisector Theorem

IMPORTANT

Angle Bisector Theorem: Overview

This topic covers concepts such as Angle Bisector Theorem and Areas of Similar Triangles.

Important Questions on Angle Bisector Theorem

HARD
IMPORTANT

In a triangle ABC, X and Y are points on the segments AB and AC respectively such that AX: XB=1:2 and AY: YC=2:1. If the area of triangle AXY is 10 then what is the area of triangle ABC ?

MEDIUM
IMPORTANT

Areas of two similar triangles are 36 cm2and 100 cm2. If the length of a side of the larger triangle is 20 cm, then the length of the corresponding side of the smaller triangle is

EASY
IMPORTANT

Diagonals of a trapezium PQRS intersect each other at the point O. If PQRS and PQ=3RS, then the ratio of areas of triangles POQ and ROS is

EASY
IMPORTANT

DEF~MNK. If DE=5 and MN=6, then arDEFarMNK=

EASY
IMPORTANT

The sides of two similar triangles are in the ratio 2:3, then their areas are in the ratio:

MEDIUM
IMPORTANT

In ABC, XYBC and XY=12BC. If the area of AXY=10 cm2, find the area of the trapezium XYCB (in cm2).

Question Image

EASY
IMPORTANT

DEF~MNK. If DE=5 and MN=6, then find the value of arDEFarMNK.

MEDIUM
IMPORTANT

Let P Q R be an acute-angled triangle in which P Q<Q R . From the vertex Q draw the altitude QQ1 the angle bisector QQ2 and the median QQ3, with Q1,Q2,Q3 lying on P R. Then,

EASY
IMPORTANT

Let a, b, c be the side-length of a triangle and l, m, n be the lengths of its medians. Put K=l+m+na+b+c Then, as a, b, c vary, K can assume every value in the interval

MEDIUM
IMPORTANT

In a triangle ABC,BAC=90°;AD is the altitude from A on to BC. Draw DE perpendicular to AC and DF perpendicular to AB. Suppose AB=15 and BC=25. Then the length of EF is
 

EASY
IMPORTANT

If ABC~DEF in which AB=1.6 cm, DE=2.4 cm. The ratio of the areas of ABC and DEF is

MEDIUM
IMPORTANT

If the ratio of the heights of two similar triangles is 4:9, find the ratio of the areas.

MEDIUM
IMPORTANT

In DABCAD is the bisector of A, also AB=8 cm, BD=5 cm, DC=4 cm, find the length of AC.

Note: This question given in the book seems to have errors and the modified question should be as below.

In ABCAD is the bisector of A, also AB=8 cm, BD=5 cm, DC=4 cm, find the length of AC in cm.

HARD
IMPORTANT

Perpendiculars PB and QA are drawn to two ends of a line segment AB. If P and Q are at the opposite sides of AB and their joining line intersects AB at O. Also PO=5 cm, QO=7 cm, area POB=150 cm2, find the area QOA in cm2.

MEDIUM
IMPORTANT

In a ABC, if point D is on the side BC such that ABAC=BDDC and B=70°, C=50°. Find BAD.

MEDIUM
IMPORTANT

Given ABC~DEF, and AB=10 cm, DE=8 cm, then area of ABC:area of DEF will be:

HARD
IMPORTANT

In a trapezium ABCD, ADDC and its diagonals intersects each other at O. If AB=2CD, the ratio of the areas AOB and COD is:

MEDIUM
IMPORTANT

The areas of two triangles are 25 cm2 and 36 cm2 respectively. If a median of smaller triangle is 10 cm, the corresponding median of larger triangle is:

MEDIUM
IMPORTANT

In figure, if AB=3.4 cm, BD=4 cm, BC=10 cm, then the measure of AC is:

Question Image

(Note: AD is the angle bisector of A).

MEDIUM
IMPORTANT

In the figure, AD is the bisector of A, if AB=6 cm, BD=8 cm, DC=6 cm, then the length of AC will be:

Question Image