Scalar Triple Product

Author:M L Aggarwal
12th ICSE
IMPORTANT

Important Questions on Scalar Triple Product

MEDIUM
IMPORTANT

Find λ such that the four points A-1, 4, -3, B3, λ, -5, C-3, 8, 5 and D-3, 2, 1 are coplanar.

MEDIUM
IMPORTANT

Find the value of λ for which the four points with position vectors 6i^-7j^, 16i^-19j^-4k^, λj^-6k^ and 2i^-5j^+10k^ are coplanar.

MEDIUM
IMPORTANT

Find the value of λ for which the four points A, B, C and D with position vectors -j^-k^, 4i^+5j^+λk^, 3i^+ 9j^+4k^ and -4i^+4j^+4k^ respectively are coplanar.

MEDIUM
IMPORTANT

If a= i^-k^ ,b= xi^+ j^+(1- x)k^, c=yi^+xj^+(1+x-y)k^ and, then show thata b c is independent of x and y .

MEDIUM
IMPORTANT

If a=i^+j^+k^b=i^-j^+2k^c=xi^+(x-2)j^ - k^ and the vector c lies in the plane of a and b, then find the value of x.

MEDIUM
IMPORTANT

Find the value of λ so that the vectors 2i^-j^+k^, i^+2j^-3k^ and 3i^+λj^+5k^ are coplanar.

EASY
IMPORTANT

Find the value of λ so that the vectors i^-j^ + k^, 2i^+ j^-k^, λi^-j^+λk^ are coplanar.

MEDIUM
IMPORTANT

Find the value ofλ  so that the vectors  i^+3j^,5k^ and λi^-j^ are coplanar.

MEDIUM
IMPORTANT

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors i^+j^+ k^, i^-j^+k^ and i^+2j^.

HARD
IMPORTANT

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors a=2i^-3j^+4k^, b=i^+2j^-k^ and c=2i^-j^+2k^.

EASY
IMPORTANT

If a=2i^-3j^+4k^, b=i^+2j^-k^ and c= 3i^-j^+2k^, then find a+b b+c c+a.

EASY
IMPORTANT

If a=2i^-3j^+4k^, b=i^+2j^-k^ andc= 3i^-j^+2k^, then find a b c.

MEDIUM
IMPORTANT

If a=2i^-3j^+4k^, b=i^+2j^-3k^ and c= 3i^+4j^-k^, then find (a×b)·c and a·b×c. Is a×b·c=a·b×c?

MEDIUM
IMPORTANT

Using scalar triple product, prove that the points -1, 4, 3, 3, 2, 5, -3, 8, -5 and -3, 2, 1 are coplanar.

MEDIUM
IMPORTANT

If Question Image and the vectors A=(1, a, a2), B=(1, b, b2), C=(1, c, c2) are non-coplanar, then prove that abc = -1.

MEDIUM
IMPORTANT

If the vectors a, b, c are coplanar, show that a+b, b+c, c+a are also coplanar.

MEDIUM
IMPORTANT

For any three vectorsa, b and c, show that a- b, b-c and c-a are coplanar.

MEDIUM
IMPORTANT

If a, b, c are three vectors, show that (a +b) · [(b+c)×(c+a) ]= 2[a b c]

MEDIUM
IMPORTANT

Show that the four points having position vectors 6i^-7j^, 16i^-19 j^-4k^, 3j^-6k^ and 2i^+ 5j^+10k^ are not coplanar.

HARD
IMPORTANT

Show that the four points with position vectors 4i^+8j^+12k^2i^+4j^+6k^, 3i^+5j^+4k^ and 5i^+8j^+5k^ are coplanar.