Joint and Marginal Probability Mass Function

IMPORTANT

Joint and Marginal Probability Mass Function: Overview

This Topic covers sub-topics such as Joint Probability Mass Function, Marginal Probability Mass Function and, Joint and Marginal Probability Density Function

Important Questions on Joint and Marginal Probability Mass Function

EASY
IMPORTANT

If the joint probability mass function of two discrete random variables X and Y is PXYx,y which is given by

  Y=0 Y=1
X=0 38 14
X=1 18 14

Find the marginal probability mass function of X.

EASY
IMPORTANT

If the joint probability mass function of two discrete random variables X and Y is PXYx,y which is given by

  Y=0 Y=1
X=0 18 38
X=1 14 14

Find the marginal probability mass function of Y.

EASY
IMPORTANT

If the joint probability mass function of two discrete random variables X and Y is PXYx,y which is given by

  Y=0 Y=1
X=0 18 38
X=1 14 14

Find the marginal probability mass function of X.

EASY
IMPORTANT

If the joint probability mass function of two discrete random variables X and Y is PXYx,y which is given by

  Y=0 Y=1
X=0 14 14
X=1 18 38

Find the marginal probability mass function of Y.

MEDIUM
IMPORTANT

The joint probability density function ̥of two discrete random variables X,Y is fx,y={x3y2,0x1,0y10,elsewhere, then the marginal probability density function of X is 

MEDIUM
IMPORTANT

The joint probability density function ̥of two discrete random variables X,Y is fx,y={xy2,0x1,0y10,elsewhere, then the marginal probability density function of X is 

EASY
IMPORTANT

The joint probability mass function of two discrete random variables X and Y is given by

Y 1 3 9
X
2 0.1 0.1 0.05
4 0.2 0 0.1
6 0.1 0.15 K

Find K.

MEDIUM
IMPORTANT

The joint probability density function ̥of two discrete random variables X,Y is fx,y={x2y,0x1,1y20,elsewhere, then the marginal probability density function of X is 

EASY
IMPORTANT

If the joint probability mass function of two discrete random variables X and Y is PXYx,y which is given by

  Y=0 Y=1
X=0 14 14
X=1 18 38

Find the marginal probability mass function of X.

MEDIUM
IMPORTANT

If X and Y be the random variable with their marginal density function as f(x)={2x,0x10otherwise and g(y)={2y,0x10otherwise, then E(X)+E(Y)=

MEDIUM
IMPORTANT

The join probability density function ̥of X,Y is f(x,y)={x2y,0x1,0y20,elsewhere. Then the marginal probability distribution of X is 

HARD
IMPORTANT

The value of E(3X)+E(4Y) for the following joint probability distribution function of X and Y is

Y 1 2 3
X
-5 0 0.1 0.1
0 0.1 0.2 0.2
5 0.2 0.1 0