Amit M Agarwal Solutions for Chapter: Applications of Derivatives, Exercise 1: Work Book Exercise 7.1

Author:Amit M Agarwal

Amit M Agarwal Mathematics Solutions for Exercise - Amit M Agarwal Solutions for Chapter: Applications of Derivatives, Exercise 1: Work Book Exercise 7.1

Attempt the free practice questions on Chapter 7: Applications of Derivatives, Exercise 1: Work Book Exercise 7.1 with hints and solutions to strengthen your understanding. Complete Study Pack for Engineering Entrances Objective Mathematics Vol 2 solutions are prepared by Experienced Embibe Experts.

Questions from Amit M Agarwal Solutions for Chapter: Applications of Derivatives, Exercise 1: Work Book Exercise 7.1 with Hints & Solutions

EASY
JEE Advanced
IMPORTANT

The position of a point in time t is given by x=a+bt-ct2, y=at+bt2. Its acceleration at time t is

MEDIUM
JEE Advanced
IMPORTANT

Gas is being pumped into a spherical balloon at the rate of 30 ft3/min. Then, the rate at which the radius increases when it reaches the value 15 ft, is

HARD
JEE Advanced
IMPORTANT

Water is dripping out from a conical funnel of semi-vertical angle π4 at the uniform rate of 2 cm3/s in the surface area, through a tiny hole at the vertex of the bottom. When the slant height of cone is 4 cm, find the rate of decrease of the slant height of water, is

HARD
JEE Advanced
IMPORTANT

A stick of length a cm rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of b cms, then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is

MEDIUM
JEE Advanced
IMPORTANT

The rate of change of the volume of a sphere w.r.t. its surface area, when the radius is 2cm is

MEDIUM
JEE Advanced
IMPORTANT

A cube of ice melts without changing its shape at the uniform rate of 4 cm3/min. The rate of change of the surface area of the cube, in cm2/min, when the volume of the cube is 125 cm3 is

EASY
JEE Advanced
IMPORTANT

If the radius of a sphere is measured as 7 m with an error of 0.02 m, then the approximate error in calculating its volume is