Newton Leibnitz's Theorem

Author:Embibe Experts
JEE Main/Advance
IMPORTANT

Important Questions on Newton Leibnitz's Theorem

HARD
IMPORTANT

Let a, b, c be non-zero real numbers such that ; 011+cos8xax2+bx+cdx=021+cos8xax2+bx+cdx, then the quadratic equation ax2+bx+c=0 has -

HARD
IMPORTANT

If x=0t2ez2tanz+1tan2z2zsec2zdz & y=0t2ez1-tan2z2tanz2zsec2zdz.

Then the inclination of the tangent to the curve at t=π4 is-

HARD
IMPORTANT

Let y=fx be a differentiable curve satisfying 2xftdt=x22+x2t2ftdt, then -π4π4fx+x9x3+x+1cos2xdx equals-

MEDIUM
IMPORTANT

The value of limxddx3xr3r+1r1dr is-

MEDIUM
IMPORTANT

Given a function fx such that

a it is integrable over every interval on the real line and

b fT+x=fx, for every x and a real T, then show that the integral aa+Tfxdx is independent of a.

HARD
IMPORTANT

The value oflimx+0xex2dx20xe2x2dx is equal to

MEDIUM
IMPORTANT

The value of limx0+0x2sinxdxx3 is equal to A, then 6A is equal to

MEDIUM
IMPORTANT

If fx=exe3xtlntdt, x>0, then differential coefficient of fx w.r.t. lnx, when x=ln2, is equal to

MEDIUM
IMPORTANT

Investigate for maxima & minima for the function, fx=1x2t-1t-23+3t-12t-22dt.

HARD
IMPORTANT

Number of values of x satisfying the equation -1x8t2+283t+4dt=32x+1logx+1x+1, is

HARD
IMPORTANT

The function fx=0x1-t4dt is such that :

MEDIUM
IMPORTANT

Let fx=2xdt1+t4 and g be the inverse of f. Then the value of g'(0) is

HARD
IMPORTANT

Let f:RR be a differentiable function and f(1)=4.

Then, the value of limx14f(x)2tx-1dt is

HARD
IMPORTANT

If a, b and c are real numbers, then the value of limt0ln1t0t1+asinbxcxdx equals