Embibe Experts Solutions for Chapter: Definite Integration, Exercise 1: EXERCISE-1

Author:Embibe Experts

Embibe Experts Mathematics Solutions for Exercise - Embibe Experts Solutions for Chapter: Definite Integration, Exercise 1: EXERCISE-1

Attempt the practice questions on Chapter 31: Definite Integration, Exercise 1: EXERCISE-1 with hints and solutions to strengthen your understanding. Beta Question Bank for Engineering: Mathematics solutions are prepared by Experienced Embibe Experts.

Questions from Embibe Experts Solutions for Chapter: Definite Integration, Exercise 1: EXERCISE-1 with Hints & Solutions

HARD
JEE Main/Advance
IMPORTANT

The value of the definite integral 1ex+1+e3x1dx is

HARD
JEE Main/Advance
IMPORTANT

The value of the definite integral 1ex+1exlnxdx is-

HARD
JEE Main/Advance
IMPORTANT

Let a, b, c be non-zero real numbers such that ; 011+cos8xax2+bx+cdx=021+cos8xax2+bx+cdx, then the quadratic equation ax2+bx+c=0 has -

MEDIUM
JEE Main/Advance
IMPORTANT

If fx=Asinπx2+B, f'12=2 and 01fxdx=2Aπ, then the constant A and B are-

HARD
JEE Main/Advance
IMPORTANT

Solve:0xtan1x1+x22dx.

MEDIUM
JEE Main/Advance
IMPORTANT

Suppose ff' and f'' are continuous on 0, e and that f'e=fe=f1=1 and 1efxx2dx=12, then the value of 1ef''xlnxdx equals -

HARD
JEE Main/Advance
IMPORTANT

1221xsinx1xdx has the value equal to -

HARD
JEE Main/Advance
IMPORTANT

The value of π2π2sinxdx is equal to (where [.] represents the greatest integer function)