H S Hall and S R Knight Solutions for Chapter: Binomial Theorem: Positive Integral Index, Exercise 2: EXAMPLES. XIII.b.

Author:H S Hall & S R Knight

H S Hall Mathematics Solutions for Exercise - H S Hall and S R Knight Solutions for Chapter: Binomial Theorem: Positive Integral Index, Exercise 2: EXAMPLES. XIII.b.

Attempt the practice questions on Chapter 13: Binomial Theorem: Positive Integral Index, Exercise 2: EXAMPLES. XIII.b. with hints and solutions to strengthen your understanding. Higher Algebra solutions are prepared by Experienced Embibe Experts.

Questions from H S Hall and S R Knight Solutions for Chapter: Binomial Theorem: Positive Integral Index, Exercise 2: EXAMPLES. XIII.b. with Hints & Solutions

EASY
JEE Main
IMPORTANT

Show that the middle term in the expansion of 1+x2n is 1·3·5(2n-1)n!2nxn.

EASY
JEE Main
IMPORTANT

If C0, C1, C2,Cn denote the coefficients in the expansion of 1+xn. Prove that C1+2C2+3C3++nCn=n2n-1.

EASY
JEE Main
IMPORTANT

If C0, C1, C2, C3,.Cn denote the coefficients in the expansion of (1+x)n, prove that, C0+C12+C23+C34++Cnn+1=2n+1-1n+1.

EASY
JEE Main
IMPORTANT

If C0, C1, C2,.,Cn denote the coefficient in the expansion of (1+x)n, prove that, C1C0+2C2C1+3C3C2+4C4C3++nCnCn-1=n(n+1)2.

EASY
JEE Main
IMPORTANT

If C0, C1, C2, C3,.Cn denote the coefficients in the expansion of 1+xn, prove that C0+C1C1+C2C2+C3Cn-1+Cn=C1C2C3Cnn+1nn!.

HARD
JEE Main
IMPORTANT

If C0, C1, C2,.,Cn denote the coefficients in the expansion of 1+xn, prove that  2C0+22C12+23C23+24C34++2n+1Cnn+1=3n+1-1n+1.

EASY
JEE Main
IMPORTANT

If C0, C1, C2,,Cn denotes the coefficients in the expansion  of (1+x)n, prove that C02+C12+C22+.+Cn2=2n !n ! n !.

EASY
JEE Main
IMPORTANT

If C0, C1, C2,..,Cn denote the coefficients in the expansion of (1+x)n, prove that, C0Cr+C1Cr-1+C2Cr-2++Cn-rCn=2n !(n-r) ! (n+r) !