Embibe Experts Solutions for Chapter: Continuity and Differentiability, Exercise 1: Exercise

Author:Embibe Experts

Embibe Experts Mathematics Solutions for Exercise - Embibe Experts Solutions for Chapter: Continuity and Differentiability, Exercise 1: Exercise

Attempt the free practice questions on Chapter 16: Continuity and Differentiability, Exercise 1: Exercise with hints and solutions to strengthen your understanding. Achieve Indian Airforce Agniveer Vayu Mathematics Practice Book solutions are prepared by Experienced Embibe Experts.

Questions from Embibe Experts Solutions for Chapter: Continuity and Differentiability, Exercise 1: Exercise with Hints & Solutions

MEDIUM
Agniveer Vayu
IMPORTANT

Consider the function f(x)=1x+2, then f is 

MEDIUM
Agniveer Vayu
IMPORTANT

The relation between a  and b so that the function f(x) defined by f(x)=ax+1, if x3bx+3,,   if x>3 is continuous at x=3 is

HARD
Agniveer Vayu
IMPORTANT

The value of f (0), so that the function fx=(27-2x)13-39-3(243+5x)15x0 is continuous, is given by 

HARD
Agniveer Vayu
IMPORTANT

The value of f (0), so that the function fx=2-(256-7x)18(5x+32)15-2,x0 is continuous, is given by 

HARD
Agniveer Vayu
IMPORTANT

If fx=36x-9x-4x+12-1+cosx,if x0k,if x=0 is continuous at x=0, then k equals

MEDIUM
Agniveer Vayu
IMPORTANT

The function fx is defined such that f(x)=1x+2 and gx=x2+2x, then derivative of fx with respect to gx at x=1  is

HARD
Agniveer Vayu
IMPORTANT

The function f( x )= x 2 +2x+3,[ 4,6 ] is verifying which of the following theorem: