Angle Between Two Vectors

Author:R D Sharma
12th CBSE
IMPORTANT

Important Questions on Angle Between Two Vectors

MEDIUM
IMPORTANT

Find the magnitude of each of the two vectors a and b, having the same magnitude such that the angle between them is 60° and their scalar product is 92.

EASY
IMPORTANT

Write the angle between two vectors aand b with magnitudes3 and 2 respectively having a·b=6

HARD
IMPORTANT

Find the angle between the vectors a=i^-j^+k^ and b=i^+j^-k^.

EASY
IMPORTANT

Find the angle between two vectors a and b, if |a|=3,|b|=3 and a·b=1.

EASY
IMPORTANT

Find the angle between the vectors a and b, where a=3i^-2j^-6k^ and b=4i^-j^+8k^

HARD
IMPORTANT

Find the angles of a triangle the coordinates of whose vertices are A(0,-1,-2), B(3, 1, 4) and (5, 7, 1).

MEDIUM
IMPORTANT

If the vertices A, B and C of ABC have position vectors (1, 2, 3), (-1, 0, 0) and (0, 1, 2), respectively, what is the value of k if the magnitude of ABC=cos-110k?

EASY
IMPORTANT

Find the angle between two vectors a and b, if |a|=3,|b|=2 and a·b=6.

 

HARD
IMPORTANT

If a and b are unit vectors, then find the value of k, if the angle between a and b is πk, given that 3a-b is a unit vector.

HARD
IMPORTANT

 If a and b are two unit vectors such that a+b is also a unit vector, then find the value of k, if the angle between a and b is kπ3

HARD
IMPORTANT

If a and b are unit vectors, find the value of k if the angle between a+b and a-b is k°

MEDIUM
IMPORTANT

Find the value of x+y, if the cosine of the angle between the vectors  4i^-3j^+3k^ and 2i^-j^-k^ is cosθ=xy.

HARD
IMPORTANT

What is the value of  k, if angle between vectors a and b with magnitudes 2 and 3 respectively is πk? Given a·b=3

EASY
IMPORTANT

If a=i^-j^ and b=-j^+2k^, find (a-2b)·(a+b).

EASY
IMPORTANT

If a and b are two vectors such that |a|=4, |b|=3 and a·b=6.  Find the value of k, if the angle between a and bis πk

EASY
IMPORTANT

Find the magnitude of two vectors a and b that are of the same magnitude, are inclined at 30° and whose scalar product is 12.

HARD
IMPORTANT

Find the angles which the vector a=i^-j^+2k^ makes with the coordinate axes.

EASY
IMPORTANT

Find the value of a+b, if the angle between the vectors a and b is cos-1-ab, where a=i^+2j^-k^, b=i^-j^+k^.

EASY
IMPORTANT

Find the value of ba if the angle between the vectors a and b is cos-1-ab, where a=2i^-3j^+k^ and b=i^+j^-2k^.

EASY
IMPORTANT

Find the value of k, if the angle between the vectors a and b is πk, where a=2i^-j^+2k^ and b=4i^+4j^-2k^.