Embibe Experts Solutions for Exercise 1: Exercise

Author:Embibe Experts

Embibe Experts Mathematics Solutions for Exercise - Embibe Experts Solutions for Exercise 1: Exercise

Attempt the practice questions from Exercise 1: Exercise with hints and solutions to strengthen your understanding. Mathematics Crash Course (Based on Revised Syllabus-2023) solutions are prepared by Experienced Embibe Experts.

Questions from Embibe Experts Solutions for Exercise 1: Exercise with Hints & Solutions

MEDIUM
12th Telangana Board
IMPORTANT

If n is an integer then show that (1+i)2n+(1-i)2n=2n+1cosnπ2.

MEDIUM
12th Telangana Board
IMPORTANT

If α,β are the roots of the equation x2-2x+4=0, then for any nN, show that αn+βn=2n+1cosnπ3.

MEDIUM
12th Telangana Board
IMPORTANT

If n is an integer and z=cisθ,θ(2n+1)π2, then show that z2n-1z2n+1=itannθ.

HARD
12th Telangana Board
IMPORTANT

If n is a positive integer, show that P+iQ1n+P-iQ1n=2P2+Q212n·cos1ntan-1QP.

MEDIUM
12th Telangana Board
IMPORTANT

Solve the following equation: x4-1=0.

HARD
12th Telangana Board
IMPORTANT

Solve (x-1)n=xn, where n is positive integer.

MEDIUM
12th Telangana Board
IMPORTANT

Solve the following equation: x9-x5+x4-1=0.

HARD
12th Telangana Board
IMPORTANT

If z2+z+1=0, where z is a complex number, prove that z+1z2+z2+1z22+z3+1z32+z4+1z42+z5+1z52+z6+1z62=12.