Trigonometrical Ratios Allied Angles (Negative and Associated Angles)

Author:SURANJAN SAHA & SABITA SAHA
11th ICSE
IMPORTANT

Important Points to Remember in Chapter -1 - Trigonometrical Ratios Allied Angles (Negative and Associated Angles) from SURANJAN SAHA I.S.C MATHEMATICS FOR CLASS XI Solutions

1. Compound angle formulae of two angles:

(i) sinA+B=sinAcosB+cosAsinB

(ii) sinAB=sinAcosBcosAsinB

(iii) cosA+B=cosAcosBsinAsinB

(iv) cosAB=cosAcosB+sinAsinB

(v) tanA+B=tanA+tanB1-tanAtanB

(vi) tanA-B=tanA-tanB1+tanAtanB

(vii) sinA+BsinAB=sin2Asin2B

(viii) cosA+BcosAB=cos2Asin2B

2. Compound angle formulae involving three angles:

(i) sinA+B+C=sinAcosBcosC+cosAsinB cosC+cosAcosBsinCsinAsinBsinC

(ii) cosA+B+C=cosAcosBcosCcosAsinBsinCsinAcosBsinCsinAsinBcosC

(iii) tanA+B+C= tanA+tanB+tanC-tanAtanBtanC1-tanAtanB-tanBtanC-tanCtanA

3. Trigonometric identities when sum of angles is supplementary and complete:

(i) If A+B=π, then sinA=sinB,cosA=-cosB and tanA=-tanB

(ii) If A+B=2π, then sinA=-sinB,cosA=cosB and tanA=-tanB

4. Allied angles:

Two angles (or numbers) are called allied iff their sum or difference is a multiple of π2.

5. Rules to memorize the formulae of Allied angles:

(i) For trigonometric functions of (odd multiples of π2±θ) the trigonometric functions will interchange as sinθcosθ, secθcosecθ, tanθcotθ. Look at the quadrant to decide the sign of the trigonometric function.

(ii) For trigonometric functions of (multiple ofπ±θ), there is no change in the trigonometric functions. Look at the quadrant to decide the sign of the trigonometric function.

6. Trigonometric functions of π2-θ:

(i) sinπ2-θ=cosθ

(ii) cosπ2-θ=sinθ

(iii) tanπ2-θ=cotθ

(iv) cosecπ2-θ=secθ

(v) secπ2-θ=cosecθ

(vi) cotπ2-θ=tanθ

7. Trigonometric functions of π2+θ:

(i) sinπ2+θ=cosθ

(ii) cosπ2+θ=-sinθ

(iii) tanπ2+θ=-cotθ

(iv) cosecπ2+θ=secθ

(v) secπ2+θ=-cosecθ

(vi) cotπ2+θ=-tanθ

8. Trigonometric identities from product to sum or difference:

(i) 2sinAcosB=sinA+B+sinAB

(ii) 2cosAsinB=sinA+BsinAB

(iii) 2cosAcosB=cosA+B+cosAB

(iv) 2sinAsinB=cosABcosA+B

9. Trigonometric identities from sum or difference to product:

(i) sinC+sinD=2sinC+D2 cosC-D2

(ii) sinC-sinD=2sinC-D2cosC+D2

(iii) cosC+cosD=2cosC+D2cos C-D2

(iv) cosC-cosD=-2sinC+D2sinC-D2

10. Trigonometric identities of 2x:

(i) sin2x=2sinx cosx

(ii) cos2x=cos2xsin2x

(iii) cos2x=2cos2x1

(iv) cos2x=12sin2x

(v) tan2x=2tan x1-tan2 x

(vi) sin2x=2tan x1+tan2 x

(vii) cos2x=1-tan2 x1+tan2 x

11. Trigonometric identities of 3x:

(i) sin3x=3sinx4sin3x

(ii) cos3x=4cos3x3cosx

(iii) tan3x=3tanx-tan3x1-3tan2x

12. Trigonometric identities of x2:

(i) sinx2=1-cosx2

(ii) cosx2=1+cosx2

(iii) tanx2=1-cos x1+cos x

13. Some useful results:

(i) cosxcos2xcos22xcos23x....cos2n1x = sin 2nx2n sin x

(ii) sinxsinπ3 -xsinπ3 +x=14sin3x

(iii) cosxcosπ3 -xcosπ3 +x=14cos3x

14. Values of trigonometric functions for special angles:

θ15°75°18°36°54°72°sinθ3-1223+1225-1410-2545+1410+254cosθ3+1223-12210+2545+1410-2545-14