Vector Triple Product

Author:Amit M Agarwal
JEE Advanced
IMPORTANT

Important Questions on Vector Triple Product

HARD
IMPORTANT

If  a=i^+2j^-2k^, b=2i^-j^+k^ and c=i^+3j^-k^, then a×(b×c) is equal to

HARD
IMPORTANT

If u=i^×a×i^+j^×a×j^+k^×a×k^, then

HARD
IMPORTANT

Let a,b and c be non-zero vectors such that a×b×c =13bca.If θ is angle between the vectors b and c, then sinθ is equal to

MEDIUM
IMPORTANT

Let a, b and c be three non-zero vectors such that no two of them are collinear and  (a×b)×c = 13bca. If θ is the angle between vectors b and c, then the value of  sinθ is

HARD
IMPORTANT

Let a, b and c be three unit vectors such that a×(b×c)=32(b+c). If b is not parallel to c, then the angle between a and b is

HARD
IMPORTANT

If a×b×c=a×b×c, where a, b and c are any three vectors such that a·b0, b·c 0, then a and c are

HARD
IMPORTANT

Let a=j^-k^ and c=i^-j^-k^. Then, the vector b satisfying a×b+c=0 and a·b=3, is

HARD
IMPORTANT

If a=1103i^+k^ and b=172i^+3j^-6k^, then the value of 2a-b·a×b×a+2b is

MEDIUM
IMPORTANT

If a× b b×c c×a=λa b c2, then λ is equal to

HARD
IMPORTANT

If a=i+j+k, a·b=1 and a×b=j-k, then b is equal to

MEDIUM
IMPORTANT

Let a, b, c are three vectors along the adjacent edges of a tetrahedron, if |a|=|b|=|c|=2 and a. b=b. c=c. a=2, then volume of tetrahedron is

EASY
IMPORTANT

Let the area of faces, OAB=λ1,OAC=λ2,ΔOBC=λ3,ΔABC=λ4 and h1, h2, h3, h4be the perpendicular height from O to face ABC, A to the face OBC, B to the face OAC, C to the face OAB respectively, then the value of 13λ1h4+13λ2h3+13λ3h2+13λ4h1 is equal to

HARD
IMPORTANT

Let a=i^+j^+k^, b=-i^+j^+k^ , c=i^-j^+k^  and d=i^+j^-k^. Then, the line of intersection of planes one determined by a,b and others determined by c, d is perpendicular to

HARD
IMPORTANT

If a,b and c are any three non-zero vectors, then the component of a×b×c perpendicular to b is

MEDIUM
IMPORTANT

If a^ is a unit vector and projection of x along a^ is 2 units and a^×x+b=x, then x is equal to

HARD
IMPORTANT

Let u^ and v^  are unit vectors and w is a vector such that u^×v^+u^=w and w×u^=v^, then find the value of [u^v^w].

MEDIUM
IMPORTANT

If  a, b, c are non-zero, non-collinear vectors such that a vector p=abcos2πa,bcand q=accosπ– a,cb, then p+q is

HARD
IMPORTANT

If a, b and c are three non-zero vectors, then which of the following statement(s) is/are true?