Newton-Leibnitz's Formula

Author:Amit M Agarwal
JEE Advanced
IMPORTANT

Important Questions on Newton-Leibnitz's Formula

HARD
IMPORTANT

Let f be a real-valued function defined on the interval 1, 1 such that e-xfx=2+0xt4+1dt, for all x1, 1 and let f1 be the inverse of f. Then, f1'2 is equal to

HARD
IMPORTANT

If 0xbtcos4t-asin4tt2dt=asin4xx for all x0, then a and b are given by

HARD
IMPORTANT

 The value of limx021cos xcos-1(t)2x-sin 2xdt is

MEDIUM
IMPORTANT

Let fx=1x2-t2dt, then the real roots of the equation x2-f'x=0 are

MEDIUM
IMPORTANT

Let f : (0, )R and  F(x)=0xf(t)dt. If F(x2)=x2(1+x), then f4 is equal to

HARD
IMPORTANT

The points of extremum of (x)=1xe-t2/2 (1-t2)dt are

MEDIUM
IMPORTANT

If 0xftdt=x+x1tftdt, then the value of f1 is

HARD
IMPORTANT

For x0,5π2, define fx=0xtsintdt. Then, f has

HARD
IMPORTANT

Let f:0, 2R be a function which is continuous on 0,2 and is differentiable on 0,2 with f0=1. Let Fx=0x2ftdt, for x0,  2. If F'x=f'x,x0,  2, then F(2) equals

HARD
IMPORTANT

Let fx=0gxdt1+t2, where gx=0cosx1+sint2dt. Also, hx=e|x| and fx=x2sin1x, if x0 and f0=0, then f'π2 is equal to

HARD
IMPORTANT

Let fx=1xet2dt and hx=f1+gxwhere gx is defined for all x, g'x exists for all x, and gx<0 for x>0. If h'1=e and g'1=1then the possible values which g1 can take

HARD
IMPORTANT

If a, b and c are real numbers, then the value of limt0ln1t0t1+asinbxcxdx equals

HARD
IMPORTANT

If fx=egx and gx=2xtdt1+t4, then f'2 is equal to

HARD
IMPORTANT

Let Cn=1n+11ntan1nxsin1nxdxthen limnn2·Cn is equal to

MEDIUM
IMPORTANT

If π2x32sin2tdt+0ycostdt=0, then dydx at x=π and y=π is

HARD
IMPORTANT

Let f be a non-negative function defined on the interval 0,1.  If 0x1f't2dt =0xftdt,0,x1 and f0=0,  then