Properties of Definite Integrals

Author:Amit M Agarwal
JEE Advanced
IMPORTANT

Important Questions on Properties of Definite Integrals

MEDIUM
IMPORTANT

Direction

Let In=-ππsin2 x(1+πx)dx; n=0, 1, 2...

The value of m=110 I2m is equal to

EASY
IMPORTANT

Direction

Let In=-ππsin x(1+πx)sinxdx; n=0, 1, 2...

The value of m=110 I2m+1 is equal to

HARD
IMPORTANT

Direction:

Let f(x)=1-x, x10, x>1 and g(x)=f(x+1)+f(x-1) for all xR.

The value of -33 g(x)dx is

HARD
IMPORTANT

Let f:RR be a continuous function given by f(x+y)=f(x)+f(y) for all x, yR. If 02f(x)dx=α, then -22f(x)dx is equal to  

HARD
IMPORTANT

Let f(x)=ex+1ex-1 and 01x3·ex+1ex-1dx=α. Then -11t3f(t)dt is equal to

MEDIUM
IMPORTANT

Let fx be a continuous function such that  nn+1f(x)dx=n3, nZ. Then, -33 f(x)dx is 

HARD
IMPORTANT

The value of -22sin2xxπ+12dx, where [.] denotes greatest integer function, is

HARD
IMPORTANT

The equation -π4π4asinx+bsinx1+cos2x+cdx=0, where a, b and c are constants, gives a relation between

HARD
IMPORTANT

The integral -1212[x]+loge1+x1-xdx (where, [.] denotes greatest integer function) is equal to

HARD
IMPORTANT

The value of -1313cos-12x1+x2+tan-12x1-x21+exdx is equal to

HARD
IMPORTANT

If fx is an odd function, then the value of -aafsinxfcosx+fsin2xdx ie equal to

MEDIUM
IMPORTANT

Let, f:RR and g:RR be continuous functions, then the value of -π2π2fx+f-xgx-g-xdx is 

HARD
IMPORTANT

If 0x[x]dx=0xxdx, xinteger (where . and . denotes the greatest integer and fraction parts respectively), then the value of 4x is equal to

HARD
IMPORTANT

If fn=0xcostdt, where x2nπ,2nπ+π2;nN and . denotes the greatest integer function, then the value of f1π is 

HARD
IMPORTANT

 If  fn=0nxdx0nxdx  (where  [.] and {.} denotes greatest integer and fractional part of x and nN). Then, the value of f4 is