EASY
12th Tamil Nadu Board
IMPORTANT
Earn 100

2z+3w=a+ib if z=5-2i and w=-1+3i, then find a+b.

66.67% studentsanswered this correctly

Important Points to Remember in Chapter -1 - Complex Numbers from Tamil Nadu Board Mathematics Standard 12 Vol I Solutions

1. Complex Numbers:

(i) -1 is an imaginary quantity and is denoted by i.

(ii) i2=1,i3=i,i4=1 and, i±n=i±k,nN where k is the remainder when n is divided by 4.

(iii) For any positive real number a, -a=ia.

(iv) For any two real numbers a and b, ab=ab, if at least one of a and b is positive-ab,  if  a < 0, b < 0.

(v) If a,b are real numbers, then a number z=a+ib is called a complex number.

(vi) Real number a is known as the real part of z and b is known as its imaginary part. We write a=Rez, b=lmz.

(vii) A complex number z is purely real if lmz=0 and z is purely imaginary if Rez=0

2. Equality of complex numbers:

Two complex numbers z1=a1+ib1 and z2=a2+ib2 are said to be equal if and only if  Re(z1)=Re(z2) and Im(z1)=Im(z2) i.e., a1=a2 and b1=b2.

3. Argand or Gaussian or Complex plane:

A complex number z=x+iy can be represented by a point P on the plane which is known as the Argand or Gaussian or Complex plane.

4. Algebra of complex numbers:

For any two complex numbers, z1=a1+ib1 and  z2=a2+ib2.

(i) Addition: z1+z2=(a1+a2)+i(b1+b2)

(ii) Subtraction: z1-z2=a1-a2+i(b1-b2)

(iii) Multiplication: z1z2=(a1a2-b1b2)+i(a1b2+a2b1)

(iv) Reciprocal: 1z1=a1a12+b12-ib1a12+b12

(v) Division: z1z2= z11z2=a1+ib1a2a22+b22-ib2a22+b22=a1a2+b1b2a22+b22+ia2b1-a1b2a22+b22

5. Inverse of a complex number:

(i) Addition in Complex number is commutative and associative. Complex number 0=0+i0 is the identity element for addition and every complex number z=a+ib has its additive inverse -z=-a-ib

(ii) Every non-zero complex number z=a+ib has its multiplicative inverse 1z (also known as reciprocal of z) such that 1z=a-iba2+b2=z¯z2.

6. Conjugate of a complex number and its properties:

(i) The conjugate of a complex number z=a+ib is denoted by z¯ and is equal to a-ib

(ii) For any three complex numbers z,z1,z2 we have

(a) z¯=z

(b) z+z¯=2Re(z)

(c) z-z¯=2iIm(z)

(d) z=z¯z is purely real.

(e) z+z¯=0 z is purely imaginary.

(f) zz={Rez}2+Imz2=z2

(g) z1± z2¯=z1¯±z2¯

(h) z1z2¯=z1 z2

(i) z1z2¯=z1¯z2¯, z2  0

7. Modulus of a complex number and its properties:

(i) The modulus of a complex number z=a+ib is denoted by z and is defined as z=a2+b2= Rez2+Imz2

(ii) If z, z1, z2 are three complex numbers, then

(a) z=0z=0 i.e. Rez=Imz=0

(b) z=z¯=-z

(c) zRezz;zlmzz

(d) zz¯=z2=z2

(e) lmznnlmzzn1,nN

(f) Rez+Imz2z

(g) z1z2=z1z2 

(h) z1z2=z1z2 

8. Argument or Amplitude of a complex number:

(i) The angle θ which OP makes with the positive direction of x-axis in anti-clockwise sense is called the argument or amplitude of z and is denoted by arg(z) or ampz.

(ii) tanθ =ImzRezθ=tan-1ImzRez

(iii) Argument of a complex number is not unique, since if θ be a value of the argument, so also is 2nπ+θ where nI.

9. Principal value of arg(z):

The valueθ  of the argument, which satisfies the inequality π<θπ is called the principal value of argument. Principal values of argument z will be θ, π-θ, -π+θ and-θ  according as the point z=a+ib lies in the first, second, third and fourth quadrants respectively, where, θ=ba.

(i) Argument of the complex number 0 is not defined.

(ii) Principal value of argument of a purely real number is 0 if the real number is positive and is π if the real number is negative.

(iii) Principal value of argument of a purely imaginary number is π2 if the imaginary part is positive and is -π2 if the imaginary part is negative.

10. Equation of Complex Form of a Circle:

The locus of z that satisfies the equation z-z0=r where z0 is a fixed complex number and r is a fixed positive real number consists of all points z whose distance from z0 is r .

(i) z-z0<r represents the points interior of the circle.

(ii) z-z0>r represents the points exterior of the circle.

11. Representation of a complex number:

(i) z=x+iy=rcosθ+isinθ is called as polar form of a complex number.

(ii) The Euler's notation is eiθ=cosθ+isinθz=reiθ is known as the Euler's form of z.

12. De’ Moivre’s Theorem:

(i) If n is any rational number, then (cosθ+i sinθ)n=cos nθ+i sin nθ.

(ii) If z=r(cosθ+isinθ) and n is a positive integer, then z1n=r1n cos 2kπ+θn+i sin 2kπ+θn, where k=0,1,2,3,,(n-1).

13. nth roots of unity and its properties:

Given a positive integer n, a complex number z is called an nth root of unity if and only if zn=1.

(i) In polar form equation can be written as zn =cos0+2kπ+i sin0+2kπ=ei2kπ, k=0,1,2,.....

(ii) In de Moivre’s theorem, zn =cos2kπn+i sin2kπn=ei2kπn, k=0,1,2,....n-1.

(iii) If we denote the complex number by ω, then ωn=1.

(iv) The nth roots of unity are 1,ω,ω2......ωn-1.

(v) All the n roots of nth roots unity are in Geometrical Progression.

(vi) The sum of all the nth roots of unity is 1+ω+ω2+.....+ωn-1=0.

(vii) The product of all the nth roots of unity is 1·ω·ω2.....ωn-1=-1n-1.

14. Cube roots of unity and its properties: 

(i) Cube roots of unity are 1,ω,ω2.

(ii) 1+ω+ω2=0.

(iii) 1·ω·ω2=1.

(iv) 1+ωr+ω2r=0 if r is not a multiple of 33  if r is a multiple of 3.