EASY
Earn 100

A is a cevian that divides the opposite side into two congruent lengths.

50% studentsanswered this correctly

Important Questions on Geometry

EASY
Cotyledons are also called-
EASY
An _____ is a cevian that divides the angle the cevian came from in half.
EASY
A _____ is a line that intersects both a triangle's vertex, and also the side that is opposite to that vertex.
EASY
An _____ is a cevian that divides the angle, into two equal halves.
EASY

Question Image

In the triangle ABCBD is a cevian. The area of BCD is 40 cm2. Find the area of ABD,

EASY

Question Image

In the triangle ABCBD is a cevian. The area of ABD is 21 cm2. Find the area of BCD,

EASY

Question Image

In the triangle ABCBD is a cevian. The area of BCD is 8 cm2 and ABD is10 cm2. If the length of AD is 5 cm. Find CD.

EASY

Question Image

In triangle ABC, points D, E, F are on the side lines CA, AB, BC respectively and the points D, E, F are collinear. Find AD.

EASY

Question Image

The cevians AF, BG and CE of the triangle intersect at DAG=2 cm, BF=3 cm, CF=9 cm, AE=4 cm and BE=4 cm. Find GC.

EASY

The cevians AF, BG and CE of the triangle intersect at DAG=2 cm, GC=6 cm, CF=9 cm, AE=4 cm and BE=4 cm. Find BF.

Question Image

EASY

Question Image

In triangle ABC, points D, E, F are on the side lines CA, AB, BC respectively and the points D, E, F are collinear. Find CD.

EASY

Question Image

The cevians AF, BG and CE of the triangle intersect at DAG=2 cm, GC=6 cm, CF=9 cm, BF=3 cm and BE=4 cm. Find AE.

EASY

Question Image

In triangle ABC, points D, E, F are on the side lines CA, AB, BC respectively and the points D, E, F are collinear. Find BC.

MEDIUM
Show that in a triangle, the medians are concurrent.
MEDIUM

In a garden containing several trees, three particular trees P, Q, R are located in the following way, BP=2 m, CQ=3 m, RA=10 m, PC=6 m, QA=5 m, RB=2 m where A, B, C are points such that P lies on BC, Q lies on AC and R lies on AB. Check whether the trees P, Q, R lie on a same straight line.

Question Image 

EASY
Prove that the external angle bisectors of a triangle intersect their opposite sides at three collinear points.
HARD
Suppose AB, AC and BC have lengths 13, 14 and 15 respectively. If AFFB=25 and CEEA=58. Find BD and DC.
HARD

In the given figure, ABC is a triangle with B=90oBC=3 cm and AB=4 cmD is point on AC such that AD=1 cm and E is the midpoint of AB. Join D and E and extend DE to meet CB at F. Find BF.

Question Image