
A ring of mass and radius is rotating with constant angular speed around a planet of mass and radius . Center of ring and planet coincide with each other. Tension in the ring is given as . Find value of . (Assume elements of the ring don't gravitationally interact with each other)



Important Questions on Gravitation



Six objects are placed at the vertices of regular hexagon. The geometric centre of the hexagon is at the origin with objects and on the -axis (see figure). The mass of the th object is where is an integer, is constant with dimension of mass and is the angular position of the th vertex measured from the positive -axis in the counter-clockwise sense. If the net gravitational force on body at the centroid vanishes, the value of is











Four identical particles of mass are located at the corners of a square of side . What should be their speed if each of them revolves under the influence of other’s gravitational field in a circular orbit circumscribing the square?






