EASY
Earn 100

A square matrix is such that A2=I, find the value of A-I3+A+I3-7A in simplified form.

50% studentsanswered this correctly

Important Questions on Matrices

EASY
Given 42-11M=6I, where M is a matrix and I is unit matrix of order 2×2. If the order of matrix M is p×q, then write the value of p+q.
HARD
Let A=aij be an n×n matrix defined by aij=ki,  i=j0,  otherwise. If m= trace of A and limk1n-m1-k=171 then the value of n is
EASY
M=mij is a 4×4 square matrix, where i=1, 2, 3, 4 and j=1, 2, 3, 4. If in the matrix M, mij=sini×jx, then the value of the determinant |M| at x=π3 is equal to
HARD
The number of 3×3 matrices M with entries from {0,1,2}, such that the sum of the diagonal elements of MTM is 5, are
EASY

If A=-11230421-2 and B=2-3-4-10-10-10, then examine whether the matrix A2-2B is singular.

EASY
For a 3×4 matrix, elements are given by aij=|-3i+4j|, then i=13aiii=___
MEDIUM
The number of possible matrices of order 3×3 with each entry 0 or 1 is
EASY
Construct a 2×2 matrix whose elements are given by, aij=|2i-3j|3
EASY
If A=aijn×n such that aij=0, for ij, then A is _____ aiiajj, n>1
MEDIUM
A square matrix in which all the non-diagonal entries are zero and diagonal entries are same numbers is called _____ matrix
EASY
If matrix A=aij3×2 and aij=3i-2j2 of matrix A, then find A.
MEDIUM
Let A+2B=1206-33-531 and 2A-B=2-152-16012. If TrA denotes the sum of all diagonal elements of the matrix A, then Tr(A)-Tr(B) has value equal to
EASY
Construct a 3×2 matrix whose elements are given by aij=12[i3j].
MEDIUM
Given 42-11M=6I, where M is the matrix and I is the unit matrix of order 2×2. Find the matrix M
EASY
If matrix A is aijm×n and B is bjkn×p then the order of the matrix AB is
EASY
If A=10251x111 is a singular matrix, then the value of x is
EASY
Let A=aij be a 2×2 matrix with aij=(-1)ji2. Then the matrix A is given by
EASY
Consider the following statements :
(I) There exists a square matrix with 12 elements
(II) There exists a zero matrix with 12 elements
MEDIUM
A=a2153112b2413561c2 and B=2a3522b8142c-3 are two matrices such that the sum of the principal diagonal elements of both A and B are equal, then the product of the principal diagonal elements of B is
EASY
The least positive integer n such that cosπ4sinπ4-sinπ4cosπ4n is an identity matrix of order 2 is