MEDIUM
Earn 100

Among

S1:limn1n2(2+4+6++2n)=1

S2:limn1n16115+215+315++n15=116

50% studentsanswered this correctly

Important Questions on Definite Integration

MEDIUM
The value of limnr=1n1+r2n22rn2 is equal to
HARD
Let fx= limnnnx+nx+n2..x+nnn!x2+n2 x2+n24..x2+n2n2xn , for all x>0 . Then
HARD
Suppose the limit L=limnn0111+x2ndx exists and is larger than 12, then
HARD
For each positive integer n, let yn=1n((n+1)(n+2)...(n+n))1n. If limnyn=L, then the value of L (where x is the greatest integer less than or equal to x) is ____
MEDIUM
Let f :0, 10,  be a continuous function such that 01fxdx=10. Which of the following statement is NOT necessarily true?
HARD
If a and b are positive integers such that b>a, then limn1na+1na+1+1na+2++1nb=
HARD
limn(n+1)1/3n4/3+(n+2)1/3n4/3+.....+(2n)1/3n4/3 is equal to
EASY
Let f be a continuous function in [0,1] , then limn j=0n1nfjn is
HARD
The value of   I= k=1 98 k k+1 k+1 x(x+1) dx,  then
HARD

For aR (the set of all real numbers), a-1, limn1a+2a++nan+1a-1na+1+na+2++na+n=160. Then a=

MEDIUM
The value of limn1nsec2π4n+sec22π4n++sec2nπ4n is
HARD
For aR, a>1, let limn1+23++n3n7/31an+12+1an+22++1an+n2=54. Then the possible value(s) of a is/are:
HARD
If limn1a+2a++nan+1a-1na+1+na+2++na+n=160  for some positive real number a, then a is equal to
HARD
limnnn2+12+nn2+22+nn2+32+.. .+15n is equal to