HARD
Earn 100

Assertion: α= sin 1 ( cos  ( sin  1   x ) ) and β= cos 1 ( sin  ( cos  1   x ) ), then tanα=cotβ
Reason: sin 1 x+ cos 1 x= π 2

50% studentsanswered this correctly

Important Questions on Inverse Trigonometric Functions

HARD
A value of x satisfying the equation sincot-11+x=costan-1x, is:
MEDIUM
If α=cos-135 , β=tan-113 , where 0<α,β<π2, then α-β is equal to
MEDIUM
The value of tan-11+x2+ 1-x21+x2- 1-x2, x<12, x0, is equal to:
MEDIUM
If a+π2<2 tan-1x+3 cot-1x<b then 'a' and 'b' are respectively.
MEDIUM
If cos-1x-cos1y2=α, where -1x1, -2y2, xy2, then for all x, y, 4x2-4xycosα+y2 is equal to :
EASY
Considering only the principal values of inverse functions, the set A=x0 : tan-12x+tan-13x=π4
MEDIUM
If f'x=tan-1secx+tanx,-π2<x<π2 and f0=0 , then f1 is equal to:
HARD
If S is the sum of the first 10 terms of the series, tan-113+tan-117+tan-1113+tan-1121+ then tan(S) is equal to :
MEDIUM
If x=sin-1sin10  and y=cos-1cos10, then y-x is equal to:
MEDIUM
Let tan-1 y=tan-1 x+tan-12x1-x2, where x<13,Then a value of y is