MEDIUM
TS EAMCET
IMPORTANT
Earn 100

Assertion: For x<0, d2dx2log|x|=1|x|2
Reason: For x<0, |x|=-x

18.18% studentsanswered this correctly

Important Questions on Differentiation

HARD
TS EAMCET
IMPORTANT
Suppose, fx=e-x+e-1x2. If f''x=α·e-xx1+1x+β·e-1x2x43-2x2, then (α,β)=
MEDIUM
TS EAMCET
IMPORTANT
The derivative of cosh-1x with respect to logx at x=5 is
MEDIUM
TS EAMCET
IMPORTANT
For any quadratic polynomial f(x), it is true that
fx=fa+f'a(x-a)+f"a2!x-a2 where a is any real number.
If 3x2+4x+7(x-2)3=A(x-2)3+B(x-2)2+C(x-2) and g(x)=3x2+4x+7 then A+B+C=
MEDIUM
TS EAMCET
IMPORTANT
For x-1, y-1, if x=1-y31+y3, then dxdy=
MEDIUM
TS EAMCET
IMPORTANT

Match the items given in List-I with those of the items of List-II

  List - I   List - II
a If y=x+x-2 then at x=2,dydx= i 1
b If fx=cos2x, then f'π4+= ii 0
c If fx=sinπx where · denotes the greatest
integer function, then f'1-=
iii -2
d If fx=logx-1,x1 then f'12= iv does not exits
    v 12
MEDIUM
TS EAMCET
IMPORTANT
If the function fx=xx+3e-x2 satisfies all the conditions of the Rolle's theorem in -3, 0, then a root of f'(x)=0 is