
By sketching a suitable pair of graphs, deduce the number of roots of the equation for

Important Questions on Numerical Solutions of Equations
The equation has a root
Show, by sketching the graph of and one other suitable graph, that is the only root of this equation.


The equation has a root, between and
Show that also satisfies the equation

The equation has a root, between and
Show that also satisfies the equation
Write down an iterative formula based on the above equation
Use your iterative formula, with a starting value of to find correct to decimal places. Give the result of each iteration to decimal places.

The equation has a root, between and The equation can be rearranged either as or
Write down two possible iterative formulae, one based on each given rearrangement.

The terms of a sequence, defined by the iterative formula converge to the value The first term of the sequence is
The value is a root of an equation of the form Find this equation.

The curve with equation has a stationary point with -coordinate lying between and
.Show that the -coordinate of this stationary point satisfies the equation .

The parametric equations of a curve are . The curve has a stationary point for a value of that lies between and
Show that the value of at this stationary point satisfies the equation
