HARD
11th Tamil Nadu Board
IMPORTANT
Earn 100

Calculate the mean deviation and its coefficient from the following data, relating to height (to the nearest cm) of 100 children.

Heights(cm) 60 61 62 63 64 65 66 67 68
No. of children 2 0 15 29 25 12 10 4 3

Important Points to Remember in Chapter -1 - Measures of Dispersion from Tamil Nadu Board Statistics Standard 11 Solutions

1. Absolute measure of dispersion:

(i) Range:

The range is the difference between the largest and smallest observations.

(ii) Variance:

σ2=X-μ2N

(iii) Standard Deviation:

S.D=σ

(iv) Quartiles and Quartile Deviation:

The quartile deviation is half of the distance between the third and the first quartile.

(v) Mean:

μ=Sum of all observationsNumber of observations

(vi) Mean deviation:

The arithmetic mean of the absolute deviations of the observations from a measure of central tendency is known as the mean deviation.

2. Relative measure of dispersion:

(i) Coefficient of range:

Coefficient of range =Xmax-XminXmax+Xmin

(ii) Coefficient of variation:

Coefficient of variation =σμ

(iii) Coefficient of standard deviation:

Coefficient of standard deviation =σμ

(iv) Coefficient of quartile deviation:

Coefficient of quartile deviation =Q3-Q1Q3+Q1

(v) Coefficient of mean deviation:

Coefficient of mean deviation =Mean deviationAverage

3. Moments:

(i) Raw Moments:

Raw moments  Raw data (d=x-A) Discrete data (d=x-A) Continuous data d=(x-A)c
μ1' Σdn ΣfdN fdN×c
μ2' Σd2n ΣfdN2 fd2N×c2
μ3' Σd3n ΣfdN3 fd3N×c3
μ4' Σd4n ΣfdN4 fd4N×c4

(ii) Central Moments:

Central moments  Raw data Discrete data  Continuous data d'=(x-x¯)c
μ1 f(x-x¯)2N=0 f(x-x¯)N=0 fdN×c
μ2 f(x-x¯)2N=0 f(x-x¯)2N=σ2 fd2N×c2
μ3 f(x-x¯)3N=0 f(x-x¯)3N fd3N×c3
μ4 f(x-x¯)4N=0 f(x-x¯)4N fd4N×c4

4. Measures of skewness:

(i) Karl-Pearson coefficient of skewness:

Karl- Pearson coefficient of skewness = Mean - Mode  S.D 

(ii) Bowley's coefficient of skewness:

Bowley's coefficient of skewness =Q3+Q1-2Q2Q3-Q1

(iii) Coefficient of skewness based on moments:

β1=μ32μ23

5. Measures of Kurtosis:

β2=μ4μ22