
Construct an incircle of an equilateral triangle with side Is its incentre and circumcentre are coincidence? Justify your answer.
Important Questions on Geometrical Constructions




Consider the following statements:
1. The point of intersection of the perpendicular bisectors of the sides of a triangle may lie outside the triangle.
2. The point of intersection of the perpendiculars drawn from the vertices to the opposite sides of a triangle may lie on two sides.
Which of the above statements is/are correct?





Consider the following statements:
The orthocentre of a triangle always lies inside the triangle.
The centroid of a triangle always lies inside the triangle.
The orthocentre of a right-angled triangle lies on the triangle.
The centroid of a right-angled triangle lies on the triangle.
Which of the above statements are correct?



Construct two circles of radii and and the distance between their centres is . Construct a direct common tangent of the circles. (only traces of construction are required).

Construct a circumcircle of , where and degree. Write the steps of construction.







