EASY
11th CBSE
IMPORTANT
Earn 100

Find the derivative of the following function.

3cotx+5cosecx

Important Points to Remember in Chapter -1 - Limits and Derivatives from NCERT Mathematics Textbook for Class 11 Solutions

1. Existence of Limit:

limxafx exists if and only if limxa-fx=limxa+fx

2. For a function fx and a real number a, limxafx and fa may not be same. In fact:

(i) limxafx exists but fa (the value of fx at x=a) may not exists.

(ii) The value fa exists but limxafx does not exist.

(iii) limxafx and fa both exist but are unequal.

(iv) limxafx and fa both exist and are equal.

3. Algebra of Limits:

Let limxafx=l and limxagx=m. If l and m both exist, then

(i) limxakfx=klimxafx=kl

(ii) limxaf±g x=limxafx±limxagx=l±m

(iii) limxafgx=limxafxlimxagx=lm

(iv) limxafgx=limxafxlimxagx=lm

(v) limxaf(x)g(x)=limxafxlimxagx=lm

4. Following are some standard limits:

(i) limxaxn-anx-a=nan-1

(ii) limx0sinxx=1

(iii) limx0tanxx=1

(iv) limxasin(x-a)x-a=1

(v) limxatan(x-a)x-a=1

(vi) limx0log(1+x)x=1

(vii) limx0ax-1x=logea,a0,a>1

(viii) limx0ex-1x=1

5. Sandwich Theorem:

Let f,g, and h be real functions such that f(x)g(x)h(x) for all x in the common domain of definition. For some real number a, if limxafx=l=limxahx, then limxagx=l.

6. Definition of Derivative:

(i) A function fx is differentiable at x=c if limxcfx-fcx-c exists finitely.

This limit is called the derivative or differentiation of fx at x=c and is denoted by f'c.

(ii) The derivative of a function f at a is defined by f'a=limh0fa+h-fah.

(iii) Mechanically, ddx(f(x)) measures the rate of change of f(x) with respect to x.

7. Following are some standard derivatives:

(i) ddxxn=n xn-1

(ii) ddxax=axlogea; a>0, a1

(iii) ddxex=ex

(iv) ddxloge x=1x

(v) ddxsin x=cos x

(vi) ddxcos x=-sin x

(vii) ddxtan x=sec2x

(viii) ddxcotx=-cosec2x

(ix) ddxsecx=secx tanx

(x) ddxcosecx=-cosecx cotx

(xi) Differentiation of a constant function is zero i.e., ddx(c)=0.

8. Algebra of derivative of functions:

If fx and gx are differentiable functions, then

(i) ddxfx±gx=ddxfx±ddxgx

(ii) Product Rule:

ddxfx×gx=gx×ddxfx+fx×ddxgx

(iii) Quotient Rule:

ddxf(x)g(x)=gx×ddxfx-fx×ddxgxgx2

(iv) ddxkfx=kddxfx, where k is a constant function.