MEDIUM
Earn 100

Find the index number by using weighted average of price relative method where the price per unit of the commodities A, B, C and D for the current year and base year 2015 is as follows.

Commodities Price per unit for the current year Price per unit for the year 2015 Weights
A 25 20 20
B 33 30 15
C 42 35 8
D 30 25 12

 

Important Questions on Index Numbers

MEDIUM

The weighted aggregative price index numbers for 2001 with 2000 as the base year using Paasche's Index Number is: 

Commodity Price (in) Quantities
  2000 2001 2000 2001
A 10 12 20 22
B 8 8 16 18
C 5 6 10 11
D 4 4 7 8
EASY
If Laspeyre’s index number is 110 and Fisher’s ideal index number is 109. Then Paasche’s Index number is
EASY
Fisher’s ideal index does not satisfy ______ test
MEDIUM

The weighted aggregative price index numbers for 2001 with 2000 as the base year using Marshal - Edgeworth Index Number is:

Commodity Price (in) Quantities
  2000 2001 2000 2001
A 10 12 20 22
B 8 8 16 18
C 5 6 10 11
D 4 4 7 8
MEDIUM

The weighted aggregative price index hymbers for 2001 with 2000 as the base year using Fisher's Index Number is

Commodity Price (in) Quantities
  2000 2001 2000 2001
A 10 12 20 22
B 8 8 16 18
C 5 6 10 11
D 4 4 7 8
MEDIUM
The value of the base time period serves as a standard point of comparison:
EASY
Fisher's ideal formula does not satisfy test______.
MEDIUM

Compute price index for the following data by applying weighted average of price relative method using arithmetic mean

Item Price Rs in 2006 Price Rs in 2007 quantity
A 2 2.5 40
B 3 3.25 20
C 1.5 1.75 10

 

EASY

 Construct Laspeyre’s index for the following data taking 2014 as base year

Items year 2014 year 2015
Price Quantity Price Quantity
A 6 50 10 56
B 2 100 2 120
C 4 60 6 60
D 10 30 12 24
E 8 40 12 36

 

MEDIUM
Construct the index from the following data for the year 2015 taking 2014 as base year using arithmetic mean
Item Price Rs in 2014 Price Rs in 2015
A 6 10
B 2 2
C 4 6
D 10 12
E 8 12
MEDIUM

Compute price index for the following data by applying weighted average of price relative method using geometric mean.

Item Price Rs in 2006 Price Rs in 2007 quantity
A 2 2.5 40
B 3 3.25 20
C 1.5 1.75 10

 

MEDIUM

From the data given, in problem. Obtain the following Compute Index number using Fisher’s formula and show it satisfies time reversal test and factor reversal test

commodity Base year current year
Prices  Quantity  Price  Quantity 
A 10 12 12 15
B 7 15 5 20
C 5 24 9 20
D 16 5 14 5
EASY

Construct Paasche’s index for the following data taking 2014 as base year

Items year 2014 year 2015
Price Quantity Price Quantity
A 6 50 10 56
B 2 100 2 120
C 4 60 6 60
D 10 30 12 24
E 8 40 12 36

 

MEDIUM
Construct the index of 2014 from the following data for the year 2012 taking 2011 as base year as base using geometric mean
Item Price Rs in 2014 Price Rs in 2015
A 6 10
B 2 2
C 4 6
D 10 12
E 8 12
EASY

Compute Paasche’s index numbers for the 2000 from the following table(Answer up to three decimal values)

Commodity Price Quantity
2002 2010 2002 2010
A 4 6 8 7
B 3 5 10 8
C 2 4 14 12
D 5 7 19 11
EASY
If Laspeyre’s price index is 324 and Paasche’s price index is 144 then Fisher’s ideal index is
EASY

Construct the price indices from the following data by applying Fisher ideal number by taking 2010 as the base year

Commodity 2010 2011
Price in Rs Quantity Price in Rs Quantity
A 15 15 22 12
B 20 5 27 4
C 4 10 7 5
EASY

Construct Marshall-Edgeworth index for the following data taking 2014 as base year

Items year 2014 year 2015
Price Quantity Price Quantity
A 6 50 10 56
B 2 100 2 120
C 4 60 6 60
D 10 30 12 24
E 8 40 12 36

 

EASY

Construct the price indices from the following data by applying Lapeyre’s method

Commodity 2010 2011
Price in Rs Quantity Price in Rs Quantity
A 15 15 22 12
B 20 5 27 4
C 4 10 7 5

 

MEDIUM

Construct the price indices from the following data by applying Paasche’s method

Commodity 2010 2011
Price in Rs Quantity Price in Rs Quantity
A 15 15 22 12
B 20 5 27 4
C 4 10 7 5