HARD
12th Tamil Nadu Board
IMPORTANT
Earn 100

Find the parametric vector, non-parametric vector and Cartesian form of equations of the plane passing through the three non-collinear points 3,6,-2,-1,-2,6 and 6,4,-2.

Important Points to Remember in Chapter -1 - Applications of Vector Algebra from Tamil Nadu Board Mathematics Standard 12 Vol I Solutions

1. Types of vectors:

(i) Collinear vectors:

Two non-zero vectors a and b are collinear if there exist non-zero scalars x and y such that x a+y b=0.

(ii) Non-colinear vectors:

If a and b are two non-zero non-collinear vectors, then x a+y b=0 x=y=0.

(iii) Co-planar vectors:

If a and b are two non-zero vectors, then any vector r coplanar with a and b can be uniquely expressed as r=x a+y b, where x, y are scalars.

Also, r =x|a| a^ + y|b| b^

(iv) Representation of a vector r in terms of three given non-coplanar vectors:

If a,b,c are three given non-coplanar vectors, then every vector r in space can be uniquely expressed as r=x a+y b+z c for some scalars x, y and z.

2. Scalar product (or dot product) of two vectors:

If a, b are two vectors inclined at an angle θ, then their scalar product is denoted by a . b and defined as  a . b=|a| |b| cosθ.

3. Scalar product (or dot product) of two vectors in the component form:

Given two vectors a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^ , then ab=a1b1+a2b2+a3b3.

4. Cross product of two vectors:

If a,  b are two vectors inclined at an angle θ, then their vector product is denoted by  a × b and defined as a × b=|a| |b| sinθ.

5. Vector product (or cross product) of two vectors in the component form:

Given two vectors a=a1i^+a2j^+a3k^ and b=b1i^+b2j^+b3k^ , then a×b=i^j^k^a1a2a3b1b2b3

6.  Angle between two non-zero vectors:

Let a and b be the two non-zero vectors. Then,

(i) The angle between  a and b  is found by the following formula θ=cos1ab|a||b|

(ii) a and b are said to be parallel if the angle between them is 0 or π.

(iii) a and b are said to be perpendicular if the angle between them is π2 or 3π2.

(iv) a·b=0 if and only if a and b are perpendicular to each other.

(iv) a×b=0 if and only if a and b are parallel to each other.

7. Finding area:

(i) Area of a triangle:

Area of ABC = 12AB × AC=12BC×BA=12CB × CA

(ii) Area of a quadrilateral:

Area of a plane convex quadrilateral ABCD is 12AC × BD, where AC and BD are diagonal.

(iii) Area of a triangle when the vertices are given:

If a, b, c are the position vectors of the vertices A, B, C of ABC, then

Area of ABC=12a× b+b×c+c×a

8. Vectors as the sides of a triangle:

If a,  b,  c are the vectors represented by the sides of a triangle taken in order, then a+b+c=0. Conversely, if a,  b,  c are three non-collinear vectors, such that a+b+c=0, then they form the sides of a triangle taken in order.

9. Section formula:

(i) If A and B are two points with position vectors a  and  b respectively, then the position vector of a point C dividing AB in the ratio m:n internally and externally are m b+n am+n and m b-n am-n respectively.

(ii) If A and B are two points with position vectors a  and  b respectively and m, n are positive real numbers, then m OA+n  OB=m+n  OC, where C is a point on AB dividing it in the ratio n:m.

(iii) Centroid of a triangle:

If S is any point in the plane of a triangle ABC, then SA+SB+SC=3 SG, where G is the centroid of  ABC.

10. Scalar triple product:

(i) The dot product of the vector a × b with the vector c is scalar triple product of three vectors a, b, c and it is written as a×b·c and denoted by a b c. It is a scalar quantity

(ii) Properties of scalar triple product:

(a) a×b·c=a·b×c 

(b)  a b c=b c a=c a b=-b a c=-c b a=-a c b

(c) If a=a1, a2, a3=a1i^+a2j^+a3k^ , b=b1, b2, b3=b1i^+b2j^+b3k^ and c=c1,c2,c3=c1i^+c2j^+c3k^, then a b c=a1a2a3b1b2b3c1c2c3

(iii) The volume of the Parallelepiped:

(a) with a, b, c as Coterminous edges = a b c

(b) with A,B,C,D as vertices of coterminous edges is AB AC AD cubic units.

(iv) The scalar triple product of three non-zero vectors is zero if, and only if the three vectors are coplanar

(v) If a,b,c and p,q,r are any two systems of three vectors, and if p=x1a+y1b+z1cq=x2a+y2b+z2c and r=x3a+y3b+z3c, then p,q,r=x1y1z1x2y2z2x3y3z3a,b,c.

11. Condition on coplanarity of three vectors:

Three vectors a,b,c are coplanar if, and only if , there exists r,s,t such that atleast one of them is non-zero and ra+sb+tc=0

12. Vector triple product:

(i) For a given set of three vectors a,b,c, the vector a×b×c is called a vector triple product

(ii) Vector triple product expansion: 

For any three vectors a,b,c we have a×b×c=acbabc.

(iii) Properties of vector triple product:

(a) a1+a2×b×c=a1×b×c+a2×b×c,λa×b×c=λa×b×c,λ

(b) a×b1+b2×c=a×b1×c+a×b2×c,a×λb×c=λa×b×c,λ

(c) a×b×c1+c2=a×b×c1+a×b×c2,a×b×λc=λa×b×c,λ  

(d) Vector triple product is not associative.

(iv) Jacobi's identity:

For any three vectors a,b,c, we have a×b×c+b×c×a+c×a×b=0

(v) Lagrange's identity:

For any four vectors a,b,c,d, we have a×bc×d=acadbcbd.

13. Equation of line passing through a point and given its direction:

(i) Parametric form of vector equation: 

The vector equation of a straight line passing through a fixed point with position vector a and parallel to a given vector b is r=a+tb, where t.

(ii) Non-parametric form of vector equation:

The vector equation of a straight line passing through a fixed point with position vector a and parallel to a given vector b is ra×b=0

(iii) Cartesian form:

The cartesian equation of a straight line passing through point A(x1,y1,z1) and parallel to b=b1i^+b2j^+b3k^ is given by xx1b1=yy1b2=zz1b3.

14. Equation of a straight line passing through two points:

(i) Parametric form of vector equation:

The parametric form of vector equation of a line passing through two given points whose position vectors are a and b is given by ra×ba=0

(ii) Non-parametric form of vector equation:

The non-parametric form of vector equation of a line passing through two given points whose position vectors are a and b is given by ra×ba=0

(iii) Cartesian form:

The cartesian form of equation of a line passing through two given points whose position vectors are a=x1i^+y1j^+z1k^ and b=x2i^+y2j^+z2k^ is given by xx1x2x1=yy1y2y1=zz1z2z1.

15. Angle between two lines:

(i) The acute angle between two given straight lines r=a+sb and r=c+sd is same as that of the angle between b and d which is given by θ=cos1|bd||b||d|

(ii) The two given lines with direction ratios b1,b2,b3 and d1,d2,d3 are perpendicular if and only if b1d1+b2d2+b3d3=0

(iii) The two given lines with direction ratios b1,b2,b3 and d1,d2,d3 are parallel if and only if b1d1=b2d2=b3d3

(iv) If the direction cosines of two given straight lines are l1,m1,n1 and l2,m2,n2, then the angle between the lines is given by cosθ=|l1l2+m1m2+n1n2|

16. Point of intersection of two straight lines:

If xx1a1=yy1a2=zz1a3andxx2b1=yy2b2=zz2b3 are the two intersecting lines, then x1+sa1,y1+sa2,z1+sa3=x2+tb1,y2+tb2,z2+tb3 for some value of s and t.

 17. Distance between two lines: 

(i) Shortest distance between the two parallel lines:

The shortest distance between the two parallel lines r=a+sbandr=c+tb is given by d=|(ca)×b||b|, where b0.

(ii) Shortest distance between the two skew lines:

The shortest distance between the two skew lines r=a+sbandr=c+td is given by δ=|(ca)(b×d)||b×d|, where b×d0

18. Necessary condition for coplanarity of two lines:

If two lines xx1b1=yy1b2=zz1b3andxx2d1=yy2d2=zz2d3 intersect each other (that is, coplanar) then we have x2x1y2y1z2z1b1b2b3d1d2d3=0

19. Equation of a plane:

(i) Cartesian equation of a plane in standard form:

In the equation ax+by+cz+d=0, the direction ratios of normal to the plane are proportional to a, b, c and the vector is given by,n=ai^+bj^+ck^.

(ii) Equation of a plane perpendicular to a vector and passing through a given point:

(a) Vector form:

The vector equation of a plane passing through a point having position vector a and normal to n is  r-a · n=0  or,  r · n=a · n.

(b) Cartesian form:

The Cartesian equation of a plane passing through x1, y1, z1 and having direction ratios proportional to a, b, c for its normal is

(iii) Equation of a plane when a normal to the plane and the distance of the plane from the origin are given:

(a) Vector form:

The vector equation of a plane having n^ as a unit vector normal to it and at a distance 'd' from the origin is r ·  n^=d. If l, m, n are direction cosines of the normal to the plane, then its vector equations r · (li^+mj^+nk^)=d. This is the vector equation of the normal form of a plane.

(b) Cartesian form:

If l, m, n are the direction cosines of normal to a plane which is at a distance p from the origin, then the Cartesian equation of the plane is lx+my+nz=p.

(iv) Intercept form of a plane:

The Cartesian equation of a plane having intercept a, b and c on  X, Y and Z axes respectively is xa+yb+zc=1.

(v) Equation of a plane passing through three points:

(a) Cartesian form: 

The Cartesian equation of a plane passing through points x1, y1, z1, x2, y2, z2 and x3, y3, z3 is   xyz1x1y1z11x2y2z21x3y3z31=0    or,    x-x1y-y1z-z1x2-x1y2-y1z2-z1x3-x1y3-y1z3-z1=0

(b) Vector form:

The vector equation of the plane passing through points having position vectors, a, band c is r · a×b+r · b×c+r · c×a=a · b×c

(vi) Equation of a plane passing through a point and parallel to the two given vectors :

The vector equation of a plane passing through a point having position vector a and parallel to vectors band c is r=a+m b+n c, where m and n are parameters. Or, r · b×c=a · b×c

(vii) Equation of a plane parallel to another plane:

(a) The equation of a plane parallel to the plane r · n=d  is  r · n=d1.

(b) The equation of a plane parallel to the plane ax+by+cz+d=0 is ax+by+cz+λ=0.

(viii) Equation of family of planes:

The equation of the family of planes containing the line a1 x+b1 y+c1 z+d1= 0 = a2 x+b2 y+c2 z+d2 is a1 x+b1 y+c1 z+d1+λ a2 x+b2 y+c2 z+d2=0, where λ is a parameter.

(xi) Equation of a plane bisecting the angle between two planes:

The equations of the planes bisecting the angles between the planes a1 x+b1 y+c1 z+d1=0 and a2x+b2y+c2z+d2=0 is given by a1x+b1y+c1z+d1a2+b2+c2=±a2x+b2y+c2z+d2a22+b22+c22

20. Angle between two planes:

The angle between two planes is defined as the angle between their normals.

(i) If r · n1=d1 and r · n2=d2 are two planes inclined at an angle θ, then cos θ=n1 · n2n1  n2 and, These planes are parallel, if n1 is parallel to n2 and perpendicular, if n1 · n2=0

(ii) If a1x+b1y+c1z+d1=0 and a2x+b2y+c2z+d2=0 are Cartesian equations of two planes inclined at an angle θ, then

cos θ=a1 a2+b1 b2+c1 c2a12+b12+c12  a22+b22+c22 and, the planes are parallel, if a1a2=b1b2=c1c2 and, perpendicular, if a1a2+b1b2+c1c2=0

20. Length of perpendicular from a point on a plane:

The length of the perpendicular from the point x1, y1 z1 to the plane ax+by+cz+d=0 is ax1+by1+cz1+da2+b2+c2 and the coordinates α, β, γ of the foot of the perpendicular are given by α-x1a=β-y1b=γ-z1c=-ax1+by1+cz1+da2+b2+c2

13. Distance between parallel planes:

The distance between the parallel planes ax+by+cz+d1=0 and ax+by+cz+d2=0 is given by d1-d2a2+b2+c2.

21. Angle between a line and a plane:

(i) The angle θ between a line x-x1l=y-y1m=z-z1n and a plane ax + by + cz + d = 0 is the complement of the angle between the line and normal to the plane and is given by sin θ=al+bm+cna2+b2+c2  l2+m2+n2

(ii) The angle θ between the line r=a+λ band the plane r · n=d is given by sin θ=b  ·  nbn

22. Condition for a line to lie in a plane:

(i) The line r=a+λ b lies in the plane r · n=d, if a · n=d  and  b · n=0.

(ii) The line x-x1l=y-y1m=z-z1n lies in the plane ax + by + cz + d = 0, if ax1+by1+cz1+d=0 and al+ bm + cn = 0

21. Condition to check coplanarity of lines:

(i) Two lines x-x1l1=y-y1m1=z-z1n1and,x-x2l2=y-y2m2=z-z2n2 are coplanar, if x2-x1y2-y1z2-z1l1m1n1l2m2n2=0 and the equation of the plane containing them is x-x1y-y1z-z1l1m1n1l2m2n2=0  or,  x-x2y-y2z-z2l1m1n1l2m2n2=0

(ii) Two lines r=a1+λb1  and r=a2+μ b1 are coplanar, if a1 ·  b1× b2=a2 · b1 × b2.