MEDIUM
Earn 100

Find the value of 96·cosπ33·cos2π33·cos4π33.........cos16π33

66.67% studentsanswered this correctly

Important Questions on Trigonometric Ratios and Identities

EASY
96 cosπ33 cos2π33 cos4π33 cos8π33 cos16π33 is equal to 
MEDIUM
The value of cosπ22cosπ23cosπ210sinπ210 is:
HARD
limn1nsinπ4+sinπ123+1n+sinπ123+2n+...+sinπ3=
HARD
The sum of the series: sinp+xsinp+q+x22!sin(p+2q)+ is
MEDIUM
The value of cos2π15cos4π15cos8π15cos14π15 is equal to
HARD
The value of 2sinπ22sin3π22sin5π22sin7π22sin9π22 is equal to:
HARD
If S=sin2p-12sin(2p)sin2p+13sin(3p)sin3p-14sin(4p)sin4p+ then tanS=
HARD
In a triangle ABC, if A:B:C=1:2:4, then secAsecBsecC is equal to
HARD
For non-negative integers n, let

fn=k=0nsink+1n+2πsink+2n+2πk=0nsin2k+1n+2π

Assuming cos-1x takes values in 0, π, which of the following options is/are correct?
MEDIUM

Represent the union of two sets by Venn diagram for each of the following.

X={x | x is a prime number between 80 and 100}

Y={y | y is an odd number between 90 and 100}

MEDIUM
The value of cos4π5cos6π5cos8π5 is equal to
MEDIUM
The value of sinπn+sin3πn+sin5πn+... upto n terms is
HARD

If   16cos( 2π 15 )cos( 4π 15 )cos( 8π 15 )cos( 16π 15 )=n , The value of n is

HARD
The value of cos20°+cos40°+......+cos140° is not equal to
MEDIUM
The value of cos 20° + cos 40° +......+ cos 140° is not equal to
HARD
Let pn=cos2nπ65 and qn=cos(4n-2)π65, where nN. If S=n=116qnn=15pn then find the value of S.
EASY
The value(s) of cosπ7.cos4π7.cos5π7 is (are)
HARD
Given, cos2mθcos2m+1θ..cos2nθ=sin2n+1 θ2n- m+1sin2mθ , where 2mθ kπ, n, mI, then cos23π10cos24π10cos25π10..cos210π10 is equal to