HARD
JEE Main
IMPORTANT
Earn 100

Find the value of limx0msinxx (where mI and . denotes the greatest integer function).

50% studentsanswered this correctly

Important Questions on Limits

MEDIUM
JEE Main
IMPORTANT
For the following questions, choose the correct answer from the codes a, b, c and d defined as follows:
Statement I:limx0xabx does not exist, (where . denotes the greatest integer function)
Statement II: limx01x does not exist.
HARD
JEE Main
IMPORTANT

For the following questions, choose the correct answer from the codes a, b, c and d defined as following:

statement I: limxafx exists =k, but limxkgx does not exist. If limxagfx exists, then x=a is a point of extrema for y=fx. If fx is non-linear.

Statement II: limxkgx does not exist, but limxagfx exists, fx will approach k , when xa through only one side.

MEDIUM
JEE Main
IMPORTANT
For the following questions, choose the correct answer from the codes a, b, c and d defined as following:
Statement I: limx0sinπsin2x2x2=π
Statement II: limx0sinxx=1
MEDIUM
JEE Main
IMPORTANT
For the following questions, choose the correct answer from the codes a, b, c and d defined as following:
Statement I: limx0sec-1sinxx=0
Statement II: limx0sinxx=1
MEDIUM
JEE Main
IMPORTANT

For the following questions, choose the correct answer from the codes a, b, c and d defined as follows:
Let an=2.99...9 n times, nN

Statement I: limnan=limnan, . denotes the greatest integer function.

Statement II: limnan=3

HARD
JEE Main
IMPORTANT
Evaluate:  limn0·2log514+18+116+to n terms
HARD
JEE Main
IMPORTANT
Let fx be twice-differentiable function and f''0=2, then evaluate limx02f(x)-3f(2x)+f(4x)x2.