HARD
Earn 100

From the top of a tower of 50 m high, Neha observes the angles of depression of the top and foot of another building to be 45° and 60° respectively. Find the height of the building to the nearest whole number (in m). Assume 3=1.732.

50% studentsanswered this correctly

Important Questions on Introduction to Trigonometry

MEDIUM

For the given figure BC=20 cm and A=30°, then AB=_____ and AC= _____

Question Image

EASY
If the ratio of height of a tower and the length of a shadow is 1:3, then the angle of elevation of the Sun has measure _____
EASY
Find the value of x 0°<x<90° in tan5x=1 in degrees.
MEDIUM
Evaluate: 4sin430°+cos460°-23sin260°-cos245°+12tan260°
EASY
Find the value of θ 0°θ90° in degree ° for which 2sinθcosθ=cosθ
MEDIUM

Evaluate

sin 30°+tan 45°-cosec 60°sec 30°+cos 60°+cot 45°

MEDIUM

Find the value of x (0°<x<90°) in degrees in sin2x=sin60°cos30°-cos60°sin30°.

EASY
On walking _____ meters on a hill making an angle of measure 30° with the ground, one can reach the height of '4a' meters from the ground
EASY
The value of secϕ1-sinϕsinϕ+cosϕsecϕ+tanϕsinϕ1+tanϕ+cosϕ1+cotϕ is equal to:
MEDIUM

If 3tanθ=1 & θ is acute, find the value of sin3θ+cos2θ.

EASY
The value of tanA always lies in between -1 and 1 0°A90°
MEDIUM
Find the value of: 5 cos2π3+4 sec2π6-tan2π4sin2π6+cos2π6. Express in pq form.
MEDIUM

tanA+B=3

tanA-B=13

0°<A+B90°A>B

find the value of A and B

MEDIUM

Evaluate 

5cos260°+4sec230°-tan245°sin230°+sin260°

EASY
The value of sinA1-cosA+1-cosAsinA÷cot2A1+cscA+1 is______.
EASY
If 3cot2ϕ-cos2ϕ=cos2ϕ0°<ϕ<90°, then the value of tan2ϕ+csc2ϕ+sin2ϕ is: